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Large-sample asymptotic distribution theory is likely to be a poor approximation when 
samples are not large relative to the time scale of the estimated model's dynamics.  As economists 
have become increasingly aware of this point, they have moved initially toward using asymptotic 
theory that assumes model dynamics separate cleanly into a non-stationary component (associated 
with the unit roots) and a stationary component.  I have argued elsewhere that the result may be 
worse than simply using the standard distribution theory associated with stationary asymptotics.  
This is because the standard stationary asymptotics preserve the usual correspondence between 
classical confidence statements and p-values and characteristics of the shape of the likelihood 
function.  This correspondence is distorted by use of the "correct" asymptotic theory. 

On the other hand, as the Bayesian approach to inference in models with strong low-frequency 
components has gained the attention of more researchers and its advantages have been 
recognized, disputes have broken out over the appropriate choice of a prior distribution.  Classical 
criteria for a prior representing "ignorance" or "objectivity" seem to suggest strongly non-flat 
priors for these models.  The flat prior on dynamic model coefficients in most instances becomes 
strongly non-flat when we transform it consistently with a change in the time interval at which 
data is measured.  The likelihood function itself, conditional on initial observations, is Gaussian in 
shape in linear Gaussian time series models, and in large samples it can be shown to have 
approximately this shape even for non-Gaussian disturbances and for unit-root model dynamics.1  
There seems to be no leading proposal for a non-flat prior that retains the transparency and 
computational simplicity of reporting the likelihood function itself in these models.  Economists 
trying to draw prescriptions for practice from, e.g., the articles on these issues assembled in the 
1991 special issue of the Journal of Applied Econometrics2 might well find the material abstract 
and puzzling.   

1. Initial Transients as Trends 
In my contribution to the Journal of Applied Econometrics symposium, I pointed out that 

estimation methods that condition on initial values, treating them as carrying no information about 
model dynamics, tend to imply that in the first part of the sample the behavior of the data is 
dominated by a large “transient”.  That is, the estimates imply that the initial data points are very 
far from the deterministic trend line or steady state, in the sense that the estimated model implies 
that future deviations as great as the initial deviation will be extremely rare.  In that paper I 
displayed a graph, roughly reproduced here as Figure 1, of the actual data, the trend line, and the 
transient generated by initial conditions, for a linear AR model of the log of U.S. real GNP, 
including a trend term.  One can see from the graph that over the first third of the sample the data 
stay below the trend line, with the initial deviation from trend much larger than occurs anywhere 
later in the sample.  I argued that this type of result was probably typical in time series data, 
especially when polynomial trend terms are included in the model. 

In this paper I expand this point and discuss its implications.  Section 1 documents that the 
phenomenon is widespread.  It shows that my earlier suggestion that it is more important the 
higher the order of polynomial trend terms in the model is incorrect -- it is in a certain sense 

                                                
1  See Kim, Jae-Young [1992] 
2 My own contribution to the discussion is Sims [1991]. 
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stronger when such terms are not included.  It also shows a tendency for the phenomenon to be 
stronger in multivariate models.   

Section 2 discusses  methodological implications of these patterns.  It argues that these 
estimated models with large initial transients are seldom appealing models of the data.  Though 
considerable attention has been devoted to distinguishing models conditional on initial data values 
with roots near the unit circle and no polynomial trend from models with polynomial trend (which 
typically are estimated to have roots farther from the unit circle), these models in fact tend to have 
similar implications and are usually unappealing for the same reasons.  Section 3 discusses 
methods for focusing attention on a more plausible region of the parameter space, in which initial 
conditions and model dynamics are not in such sharp conflict.  A Bayesian perspective seems to 
be the best way to approach this problem, and it remains difficult.  However, when we recognize 
that there is no way to avoid taking a stance on how initial conditions are related to model 
dynamics, and that this is the most important dimension of indeterminacy in choosing a reasonable 
prior, the argument over how to choose a prior takes on a more concrete form.  We must decide 
how to use the initial conditions, and there are several leading approaches that are relatively easily 
interpreted from this stance.  

2. Graphical Examples of Large Estimated Initial Transients 
If we fit a 5th-order linear univariate AR model to the log of U.S. real GDP3, including a 

constant term, but no higher-order deterministic components, the estimates are                                  

 ( . . . . . ) ( ) . ( )1 13343 1845 2495 0075 1032 037642 3 4 5− + + + − = +L L L L L Y t tε    (1)  

This equation has one real root of .9943 and two complex pairs of absolute value .68 and .48, 
respectively.  The model with linear trend term underlying Figure 1 has maximal root .943.  Thus 
it appears that by suppressing the linear trend term we find stronger support for stochastic trend, a 
non-deterministic drift in GDP rather than a pre-ordained monotone movement along a smooth 
path.  But this impression is misleading, as shown in Figure 2. 

With a root as close to one as .9943, the model implies that the variance of GDP is much 
larger than the variance of a one-period innovation, and indeed it implies a standard deviation for 
the level of GDP about its steady state of about .12, more than ten times larger than the estimated 
standard error of one-period forecast errors, which is about .01.  But the actual data are many 
standard deviations away from the estimated steady-state value.  The estimates model actual GNP 
as starting about 17 standard deviations from the steady-state in 1949, reaching a position only 
about 6 standard deviations away in 1991.  The observed behavior of the data is dominated by the 
movement in the forecast path generated form the 1948 initial conditions, shown as the dotted line 
around which the actual path fluctuates.  This deterministic forecast path is very smooth and close 
to linear.  Apparently the main function of the estimated near-unit root in this model is to allow it 
to use a large initial transient to mimic the behavior of a monotonic deterministic trend.   

The reason this happens can be seen in a simple first-order univariate autoregression with 
constant.  If 

                                                
3 GDP numbers are used as far back as they are available.  They are spliced to GNP numbers for 
earlier years. 
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 Y t Y t t( ) ( ) ( )= + - +a r e1  , (2) 

and if r Æ 1 while α remains fixed, both the implied unconditional standard deviation of Y, 

s re
2 21-d i , and the implied steady-state, a r1-a f , go to infinity.  But their ratio, a “t-

statistic” for the distance of the steady-state from zero, goes to infinity.  Thus stationary AR 
models approach the form of a random walk with trend by sending the estimated steady-state 
farther and farther from the location of the observed data, in standard-deviation units as well as in 
absolute units.   

This kind of result appears in intensified form in highly multivariate models, as these have 
higher-dimensional vectors of initial conditions and allow for correspondingly more intricate initial 
transients.  Figure 3 shows results for GDP from a 9-variable vector autoregression, using the 
same variables employed in the forecasting model from which I at one time generated forecasts 
each quarter.  The steady state is slightly farther away from the data absolutely, and much farther 
away in standard deviation units, than in the univariate model.  Most of the variables in the 9-
variable model show this pattern of steady-state far above data, smooth positively sloped initial 
transient generating an upward trend line.  Some, like the commodity price index shown in Figure 
4, show more interesting curvature in the trend line.  Three -- international value of the dollar, the 
unemployment rate, and the T-bill rate, (Figures 5-7) show data series entering the two-standard-
error band about steady state.  However, even for these variables, all or most of the data points in 
the first half of the sample lie outside the two-standard-deviation band about the steady state. 

3. Modeling the Joint Behavior of Consumption and GNP 
As an illustration, consider alternative approaches to dynamic modeling of the relation 

between quarterly aggregate real consumption and GNP.  The most straightforward approach is 
to estimate a linear VAR by OLS, conditioning on initial observations.  If we include two lags of 
each variable, in logs, and a constant, we obtain 

 C L L C L L Y C= + + - + +. . . . .9542 0456 1427 1432 012582 2d i d i e  (3)  

 Y L L C L L Y Y= - + - + +(. . ) . . ) .2991 2300 1 2139 2908 09799 e  (4) 

This system has roots of .9993, .8959, .4014, and -.1286.  Forecasts with this model for 20 years 
after the end of the sample are displayed in Figure 8, together with one-standard-error bands.  
Both the forecasts and the standard-error bands are computed from the stochastic model for the 
data implied by taking the OLS point-estimates as fixed.  The steady-state-values are not shown 
on the figure, as they are both between 17 and 19.  A chi-squared statistic x x' S-1 , with x the 
deviation of the two-dimensional initial observation from steady state and Σ the unconditional 
covariance matrix of the data, is 2829.   

This system is clearly for practical purposes a model with linear deterministic trend.  The 
curvature in the forecast paths is difficult to see, and the error bands around the path expand at 
something like the linear rate we would expect for a random walk with drift.   
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Now consider what happens when we estimate the same system by maximum likelihood, using 
the full likelihood without conditioning on initial observations.4  The estimated system is  

 C L L C L L Y C= - + - + +(. . ) (. . ) .9443 0364 1571 1409 01385 e  (5) 

 Y L L C L L Y Y= - + - + +(. . ) ( . . .2877 2228 1 2045 2773 09635 ) e  (6) 

The coefficients of this system are close to those of the system estimated by OLS.  So, 
apparently, are the roots:  .9952, .8947, .3811 and -.1222.  However for purposes of long-term 
forecasting, this estimated system is quite different from the first.  The steady-state is now 
logC=7.35, logY=7.88, values close to the initial values, and the c 2  statistic on the initial 
deviations from steady state, though significant, is an order of magnitude smaller at 153.  Chart 9 
shows the forecast paths and standard error bands.  There is still a more or less linear trend, but it 
is now negative.  Standard error bands expand much as in the model estimated by OLS.   

Which of these models is better?  There can be no purely objective answer.  If one uses OLS, 
one is implicitly treating as plausible the possibility of very persistent effects of initial conditions, 
even if they are of a kind implied by the model to be rare occurrences in the long run.  While this 
sounds on the face of it unappealing, probably most economists would be more comfortable with 
projections like Figure 8 than with projections like Figure 9.  If steady-state is far enough away, 
the model implies that approach to it is nearly linear and uniform within the sample and for a long 
period outside it.  Over a certain fairly long span of time, there is a kind of temporal homogeneity 
to the model.  Thus estimates like Figure 8, and also Figures 2 and 3, appear reasonable.  On the 
other hand, Figures 4-7, in which a deterministic component of the model behaves differently in 
the first part of the sample from the way it behaves in the latter part of the sample, raise doubts.  
Whether they are reasonable depends on whether we believe that the initial conditions for the 
sample were in fact generated by a different mechanism than that which generated subsequent 
data.  These data begin with the immediate post-World-War-II period, which was unusual.  
Whether it is unusual enough to justify the kind of temporal inhomogeneity in Figures 4-7 cannot 
be determined by looking at these data.   

A pattern like Figure 9 raises different questions.  Use of the unconditional likelihood treats 
the sample symmetrically from start to finish, and indeed in Figure 9 we find that the data at the 
end of the sample, rather than at the beginning, are the most deviant from the steady-state.  If one 
believed that, over a long enough span, economic history will show symmetric expansions and 
contractions, the forecasts in Figure 9 would look good.  Most economists do not believe this, at 
least at the time scale implied by Figure 9, but there is no way to make the data tell us objectively 
that this is an unreasonable interpretation. 

Is there a way to specify a prior that favors temporal homogeneity, giving credence to 
stationary models that oscillate about a steady state as well as to models that oscillate about a 
temporally homogeneous trend, but not to models that in effect use different models for different 

                                                
4 See the Appendix for a discussion of computational methods used to formulate and 

maximize the likelihood in a way that remains numerically stable near the boundary of the stable 
region. 
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parts of the sample?  Use of methods that condition on initial observations inevitably allow strong 
but disappearing initial transients.  Use of full-sample likelihood avoids treating the first part of 
the sample asymmetrically from the rest, but may still produce unappealing estimates (like those in 
Figure 9) that imply some part of the sample is strongly deviant.  A method I have been using for 
some time is to use Theil mixed estimation -- "dummy observations" to incorporate into a 
Bayesian prior belief that no-change forecasts should be "good" at the beginning of the sample.  In 
a VAR, one can do this by creating observations in which the right-hand side lagged values of the 
vector X are all set at X t s X s k( ) ( ), ,...,− = =1 1 , where k is the number of lags in the VAR.  The 
vector of left-hand side variables in the VAR is also set at X ( )1 .  The observation can then be 
scaled to give it a reasonable weight relative to the sample (though a weight of one can be argued 
to be a good a priori choice).  Such a dummy observation adds information to the prior favoring a 
no-change forecast.  A no-change forecast may be good because the model is close to steady-state 
at X ( )1 , or because the presence of unit roots makes a no-change forecast always fairly good.  
Short-lived initial transients will show relatively rapid rates of change initially, and will therefore 
tend to be more strongly down-weighted by this type of prior than long-lived smooth trends.   

My experience with using such priors in a forecasting model is summarized in Sims [1993].  
Unfortunately, in the example studied for this paper the OLS estimates yield such smooth 
behavior that the effect of such priors on forecasts like those in Figure 8 are barely visible.  
Probably in a 9-variable, 5-lag model they would moderate the unsettling patterns in Figures 4-7, 
but results to show that are not available at this writing. 

4. A Growth Model 
Some of the debate and ambiguity about how to model time series like these may be 

exacerbated by the use of purely "statistical" models, in which economic interpretations of the 
model are vague and informal.  When a model with a more complete economic interpretation is 
used, it becomes easier to discuss what might be reasonable beliefs about parameters, and indeed 
some of the apparent sensitivity of results to modest variations in assumptions may disappear. 

Consider the neoclassical growth model in which a representative agent maximizes 

 E
C

e dtt t

t

1

0 1

-
-

=

•

-z g
b

g
 (7) 

subject to 

 C K K K+ + =& d q a  . (8) 

Assume ß and θ evolve stochastically according to 

 d dt dWb n b b s b b= - - +( )  (9) 

 
d dt dW

d dt dW

log ( )q m q q h s

h fh s
q q

h h

a f c h= - - + +

= - +
 (10)  

The three “W” processes, the Wiener process disturbances in (9) and (10) are assumed to be 
mutually independent.   
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With modern computer technology, maximum likelihood estimation of a linearized version of 
this model (which will be accurate for "small" fluctuations around steady state) is not much more 
difficult than estimation of the full-sample ML linear VAR model.  The 2-lag, 2-variable VAR 
model has 13 free parameters (counting disturbance covariance matrix elements), while the model 
in (7)-(9) has 11.  I have in fact estimated the model using the same data on C and Y as for the 
VAR.  (K is treated as an unobserved component.)  The methods used are described in the 
Appendix.  It should be noted that the model is explicitly aggregated over time to account for the 
fact that observed data are approximately time averages over quarters.  The model achieves a 
better fit than the 2x2 VAR (a log likelihood higher by about 200) despite its slightly smaller 
number of parameters.  It produces the forecasts shown in Figure 10, which appear to me to be 
the most reasonable in these figures -- they show some growth slowdown as likely, but not 
certain, and they show forecast error bands widening relatively rapidly as the time horizon 
lengthens.   

In this model one can also experiment with full-sample likelihood approaches versus likelihood 
conditional on two initial observations.  The differences are in the expected directions.  The c 2   
statistics for deviation of initial observation from steady-state are 13.27 for the conditional model 
and 10.89 for the unconditional one.  The differences are much smaller, however, and indeed the 
implied forecasts from parameters estimated with the two criteria are so little different that they 
cannot be distinguished by eye on the graphs (and therefore are not shown separately).   

It is interesting to speculate on why this model, despite its freedom to generate complex 
deterministic trending behavior by choice of the parameters in (9) and (10), does not do so, even 
when estimated with conditional likelihood.  One explanation may be the fact that C/GDP has 
been declining since the early 50's.  In this model, the explanation for such a decline would be the 
approach of steady-state.5  With steady-state very far away, it would be hard to explain a drift in 
the savings rate.  This may also explain the small estimated value of δ – if δ is large, the 
proportional rate of decline in net savings is magnified, and forces the model to put steady-state 
nearer to explain the more rapid drop in accumulation. 

Full ML Parameter Estimates 

α: 0.469049 β: 0.047156 γ: 1.87164 δ: 0.000615183 θ: 41.993 µ: 8.71e-05 

φ: 20.1329 ν: 0.49895 s b : 0.01596 s h : 0.55605 s q : .00034356 

Note that some care is required in interpreting the estimated standard errors of disturbances.  
The µ near zero and the corresponding s b  of .016 do imply that there is a component of θ that is 

close to a logarithmic random walk with a one-period prediction error of about 1.5%, before time 
averaging.  But the large s h  corresponds to a φ of 20, meaning this component's dynamics are 
very rapidly damped.  In time averages over a period of length .25 (one quarter), the contribution 
of this component to variance will be strongly attenuated.  Indeed, this component shows so little 

                                                
5 This simple model has no government or trade balance, so the fact that in reality I/Y has mostly 
risen over the same period does not affect the fact that the model, which fits only C and GDP 
data, would interpret the declining ratio of C to GDP as reflecting convergence to steady state. 
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serial correlation that it probably contributes little to the model's explanatory power.  At the 
quarterly level of time aggregation, η dt is not behaving very differently from s q qdW  , so the 
model is close to what would have been produced with h suppressed and s q  increased to about 
.032.  This implies a one-quarter-ahead forecast standard error in θ of about 1.6%.   

5. Conclusions 
The examples studied here should make it clear that the fact that initial conditions are 

"asymptotically unimportant" cannot be an excuse for failing to be explicit about how we are (or 
are not) modeling them.  Also, the fact that dealing with initial conditions explicitly is 
computationally difficult should be of diminishing importance.  The methods applied in this paper, 
though non-standard and time-consuming to program, took modest computing time to execute.  
They could be standardized to allow wider use. 

The issues discussed here bear potentially on a wide variety of applications.  The literature on 
"convergence" in economic growth has looked through large cross-sections for a pattern of 
movement toward country or region-specific trend lines or steady states.  The phenomena studied 
here probably play a role in that literature, a role that has not been fully examined.   

The practice of imposing unit roots and cointegration on models as if it were exact a priori 
knowledge may also have an interpretation as an approximate Bayesian procedure reflecting a 
prior preferring temporal homogeneity to models that imply large initial transients.  However just 
as flat priors, particularly combined with conditional likelihood, may in effect give too much 
credibility to models that show stationary fluctuations around large transients, they may well give 
too much credibility to models with strong “long run relationships”.  The long run relationships 
may turn out to have been estimated as showing complex deterministic behavior. 
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APPENDIX 

NUMERICAL METHODS 

This paper takes an approach to estimating its non-linear dynamic stochastic general 
equilibrium (DSGE) model that is very similar to, but more primitive than, the approach taken by 
Leeper and Sims [1994 and Jinill Kim [1995] which were completed later.  As the structural 
model of this paper is meant only to show the promise of structural modeling for better treatment 
of trends and long-term forecasts, the computational methods used for this paper’s structural 
model are only sketched below. 

For all of the models of C and Y considered in this paper, the likelihood is taken to be 
Gaussian.  For the underlying structural model of C and Y, of course, the distribution of the data 
is implied not to be Gaussian, but we are using this model linearized about deterministic steady 
state, so with Gaussian driving disturbances the data are implied to be Gaussian.  Let X C Yt t t= ¢  
be the data vector and R tX ( ) be its matrix-valued autocovariance function.  Let X C Y= ¢  be the 
deterministic steady-state values of C and Y.  Define  

 ~ ,..., ;X X X X XT T T T= ¢ ¢ ¢ = ƒ1 1  (11) 

where 1T   is a T ¥1 vector of 1's; and define  

 WT XR j i= -a f  (12) 

Then the log-likelihood for the sample X XT1,...,   is 

 L T T T T T T TX X X X= - - - ¢ --. log .
~ ~

5 5 1W Wd i d i  . (13) 

To this point all we have said applies both to the case of a linear VAR model and to that of 
the linearized structural model.  The differences are only in the way X and RX  are derived.  Indeed 
the most computationally demanding part of the likelihood evaluation is the inversion of the large, 
ill-conditioned WT  matrix, so that the more complicated derivations for X  and RX  for the 
structural model do not increase the time required for the calculation by very much.  For this 
paper WT  remained well-conditioned enough to invert by a Cholesky factorization approach.  For 
larger models, it would probably be worthwhile to use an approach that efficiently exploited the 
block-Toeplitz structure of WT . 

We obtain conditional likelihood by replacing XT  with the conditional mean XT
C  of ~XT  given 

X0  and replacing WT  with WT
C  , the covariance matrix of ~XT  conditional on X0  .  Letting 

V R R TX X= ¢ ¢ ¢( ) ,... ( )1 , we have 

 X X VR X XT
C

T X- = --( )0 1
0c h (14) 

 W WT
C

T XVR V= - ¢-( )0 1  (15) 

and 

 L T
C

T
C

T T
C

T
C

T T
CX X X X= - - - ¢ -

-
. log .

~ ~
5 5

1
W Wd i d i d i (16) 
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Of course for the linear VAR model the maximum likelihood estimator can be computed directly 
by the usual least-squares formulas, so there is no need to use (16), but we use (16) for estimating 
the growth model. 

Very significant further computational problems arise in computing RX  from the 
autoregressive form of the model, in implementing the computations required to form (16), and in 
maximizing likelihood.  It is likely that a recursive approach to forming the likelihood using the 
Kalman filter is more efficient and accurate than working directly with (16) as was done in this 
paper’s computations.  The reader is referred to Leeper and Sims [1994 and Jinill Kim [1995] for 
a more detailed discussion of these issues. 
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Figure 2 
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Figure 3 

GDP from 9-variable model 
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Figure 4 

Commodity Prices from 9-variable model 
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Figure 5 

Value of the Dollar from 9-variable model 
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Figure 6 

Unemployment from 9-variable model 
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Figure 7 

Tbill Rate from 9-variable model 
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Figure 8 
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Figure 9 
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Figure 10 
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