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EMPIRICAL IMPLICATIONS OF ARBITRAGE -FREE ASSET MARKETS

Price changes for a durable good with small storage costs must, in a frictionless

competitive market, be in some sense unpredictable -- or so it seems intuitively.

After all, if the good were reliably predicted to rise very rapidly in price, one

would think the current price should be bid up by speculators eager to cash in on the

predicted capital gains, while if it were reliably predicted to fall rapidly in price

owners of the good would sell their holdings to avoid the predicted capital losses.

These market reactions to predicted price rises or falls should prevent the occur-

rence of reliably predicted rises or falls. This intuitive idea has sometimes been

formalized as the hypothesis that the price P of such a good should be a martingalet

relative to information observable by market participants, i.e. that, if X is datat

which becomes available at t,

p
# p $(1) E P p X , u≤t = P ,
3 t+sp u 4 t

for any s > 0.

But as emphasized by R.E. Lucas, Jr. [1978] and by Stephen F. Leroy [1973], among

others, (1) emerges from such models only under extremely restrictive assumptions.

In a classic paper Harrison and Kreps [1979] showed that elimination of arbitrage

opportunities would, in a market for assets traded continuously in time, force

relative prices of assets to follow stochastic processesequivalent (in a technical

measure-theoretic sense) to a martingale process. However this result is not in

conflict with the findings of Lucas and Leroy that asset prices in equilibrium models
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do not in general follow martingale processes. The martingale-equivalence result is

empty in a discrete-time model, because in such a model practically any stochastic

process is equivalent to a martingale. Even in continuous time models the martingale

equivalence result by itself places only weak restrictions on the observable behavior

of asset prices.

If it is only the martingale equivalence property, not (1) (the martingale property

itself), that is implied by theoretical analysis of arbitrage-free markets, then is

it happenstance that econometric tests of (1) often show it to be close to correct?

And is the intuitive notion that speculators should eliminate predictable price

changes simply fallacious? We show that, with a continuous data record on prices,

there are classes of behavior for prices that are inconsistent with martingale

equivalence. Roughly speaking, we show that martingale equivalence restricts the

nature of price behavior over fine time intervals, ruling out paths that show in-

creasingly erratic behavior of rates of change over smaller and smaller time units if

this erratic behavior can be to some extent predicted.

We attempt to make the paper readable at two levels. A reader should be able to

understand the nature of our claims about the testable implications of arbitrage-

freeness without having a firm enough grounding in the theory of continuous-time

stochastic processes to understand our proofs. Thus in some sections of the paper we

explain at an elementary level concepts necessary to understanding the claimed

results, while in other parts of the paper we make arguments that assume a more

mathematically sophisticated reader. While we refer to Jacod and Shiryayev [1987]

for standard results, the treatment there is terse; readers approaching the subject

for the first time might consult Protter [1990] or Dothan [1990].
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1. Martingale Equivalence

In an appendix we state the technical definition of equivalence of probability

1measures and provide a concise derivation of the martingale equivalence result .

Here we characterize the result more intuitively. If we are given some events to

which probabilities can be attached, we may consider two different probability

distributions on them,µ and ν, each of which attaches a probabilityµ(S) or ν(S) to

each event S. We sayµ is absolutely continuouswith respect toν, or ν dominatesµ,

if every event with probability zero underν has probability zero underµ, i.e.

υ(S)=0 ⇒ µ(S)=0. If the implication goes the other way as well, soµ dominatesν

also, then the two probabilities areequivalent. The events S are conditions which we

may be able to observe. To say thatµ and ν are equivalent is just to say that there

is no event we could observe which would tell us with certainty that one or the other

of the two probability models is correct. Such an event would be one which was

impossible under one model (sayµ(S)=0), but still possible under the other model

(ν(S)≠0), which is exactly what equivalence of probability measures rules out.

If a price P(t) can be observed over an interval, say [0,1], we say it follows the

stochastic processµ if µ is a probability measure over events defined as sets of

possible observed time paths for P. Roughly speaking, P follows a process equivalent

to a martingale process if there is a martingale process such that no possible

observable behavior of P can allow us to tell with certainty whether we are observing

the martingale process or P’s actual probability distribution, and vice versa -- if

we observed a Q generated by the martingale process there would be no possible

observation that could rule out Q’s having been generated by the P process.
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If we can observe P only at discrete intervals, say t=j/n, j=1,...,n, equivalence to

a martingale places no restrictions at all on P’s observable behavior. The Wiener

process martingale W(t), defined by its properties that W(t)-W(s) ~ N(0,t-s) and that

changes in W over nonoverlapping time intervals are independent, gives W(j/n),

j=1,...,n a joint normal distribution with nonsingular covariance matrix. This means

of course that the vector of W values at the n points j/n has a p.d.f. that is con-

ntinuous and nonzero over the whole of n-dimensional Euclidean spaceR . But any

ndistribution on R which has an everywhere nonzero p.d.f. is equivalent to Lebesgue

measure, and hence all such distributions are mutually equivalent. Thus any stochas-

ntic process which gives P(j/n), j=1,...,n a nonzero p.d.f. over all ofR is equiva-

lent over those n discrete t-values to the Gaussian process generated by sampling a

Wiener process at those values of t. This covers most of the stochastic processes

used in practical time series modeling -- all ARIMA processes with Gaussian distur-

bances, for example.

When P can be observed at every point of the [0,1] interval, equivalence to a martin-

gale is not an empty condition. For example, a Wiener process puts zero probability

on the event that P(⋅) is differentiable over [0,1]. Some commonly used continuous

time stochastic models (e.g., stochastic differential equations of higher than first

order) imply that P(⋅) is differentiable with probability one. Thus it is easy to

write down a convenient continuous time model that is not equivalent to a Wiener

process.

However, the class of all continuous-time martingales is large, and it turns out that

most commonly used, convenient models for continuous time stochastic processes are at

least absolutely continuous with respect to somecontinuous time martingale, even
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though many are not absolutely continuous with respect to a Wiener process. That is,

defining observable behavior for prices that has zero probability under everymartin-

gale process is not easy. Consider a process whose time paths have continuous deriva-

tives with probability one, for example. We know such a process is not absolutely

continuous with respect to a Wiener process, but it is absolutely continuous with

respect to a different martingale.

In particular, supposeµ is the probability measure for the differentiable process

and suppose that we generate a sequence of random times t , j=1,...,∞, from a Poissonj

process that makes the probability of an event generating a new t .01 per unit time.j
-.01s(That is, at any date t, the p.d.f. of the time s until the next t is .01e .)j

We define a new process as follows. To generate a random time path for the new

process first draw a time path for P from theµ distribution, then a sequence of t ’sj

from the Poisson process. Modify the initially drawn P path by adding a discontinu-

⋅ ⋅ous jump of height -100P(t ) at each of the random times t . (P is the derivative ofj j

the original P with respect to t.) The resulting process will have differentiable

time paths except for occasional random jumps, and will be a martingale. Given the

way we have chosen the jump process, the odds are about 100 to 1 against observing

any jump over the interval [0,1]. Thus the kind of behavior we always observe under

µ -- differentiable time paths of P over [0,1] -- is usually observed over that

interval under the martingale process we have constructed. The differentiable

process is absolutely continuous with respect to the martingale we constructed from

it, because if the differentiable process is the truth, we will never observe a path

of P over [0,1] which allows us to be certain that the process is not the martingale

we constructed. Of course, there is some probability under the martingale process

that we will observe a discontinuous jump in P on [0,1], and in that case we could be
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sure we were not observing the differentiable process, so the martingale is not

absolutely continuous with respect to the differentiable process.

2. An Observable Criterion for Failure of Martingale Equivalence

If the highly predictable behavior over short time intervals of a differentiable

process is not ruled out by martingale equivalence, what kind of price behavior could

we observe that would allow us to conclude that martingale equivalence fails? One

kind of price behavior that would allow such a conclusion can be characterized as

2follows. For any process X that is a local martingale there is an associated

3positive, increasing process [X,X] called the (optional)quadratic variation in X.t

We refer the reader to Jacod and Shiryayev [1987], §4e for a formal definition, as it

requires some technical apparatus. However it can be understood through the follow-

ing definition of an estimator of it and through a statement of some of its proper-

ties. We define

∧ [ t / h]h 2(2) [X , X] = ∑ (X( jh)-X((j-1)h)) , and thent j=1

∧ ( ∧ )h 4[X , X] = lim {[X , X] } ,t thL0 9 0

where the notation "[t/h]" means "the largest integer less than or equal to t/h."

Jacod and Shiryayev [1987] (Theorem 4.47) shows that term in brackets on the right of

(2) converges in probability as hL0 to [X,X] when X is a local martingale. Thist

does not imply that it converges for any single sample path, but it does imply that

the probability of paths such that the limit on the right of (2) exists and is some-
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thing other than [X,X] is zero. A martingale has zero quadratic variation witht

probability one if and only if it is a trivial constant martingale. (See Jacod and

Shiryayev [1987] Proposition 4.50.)

Let I be the set of all finite sequencest

( )n
{s } , 0<s <s <t, all i=1,...,n-1.i i i+1
9 0

i=1

The total variation in X over [0,t] is then defined as

( n )
(3) V (t) = sup { ∑ X(s )-X(s ) } .X j j-1

9j=1 0{s } in Ij t

Theorem: If X is a local martingale, with probability one there is no interval[0,t]

with t>0 such that[X,X] =0 and V (t)=∞.t X

Proof: See appendix.

Thus we have the desired criterion for an observed time path that could not have come

from a martingale process: a path for which our estimate shows zero quadratic

variation over some interval but that has unbounded variation (in the usual sense)

over the interval.
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A local martingale also cannot have infinite quadratic variation over finite inter-

vals. This provides a second criterion for an observed time path that cannot have

come from a martingale process.

Implementing a check for these condition with real data raises some problems. Both

(2) and (3) include limit operations. In practice, we never have truly continuous

records of asset prices, so we cannot actually compute these limits. We must be

content with computing (2) for a finite sequence of n’s which grow larger and (3) for

a finite sequence of increasingly fine partitions. We would look for the finite

sequence of right-hand sides of (2) to be shrinking while a finite sequence of right-

hand sides of (3) is increasing. Of course this can never give us the certainty

about failure of the no-arbitrage condition that would be possible with a truly

continuous data record.

However, the fact that actual data cannot truly leave us certain that observed prices

are not drawn from a martingale-equivalent process does not fatally weaken our

results. The results carry the same kind of weight as a standard consistency proof.

Just as, with an infinite sample, we can be certain that data are generated by an

autoregression with a unit root, with a continuous record we can be certain that an

observed price process is not martingale-equivalent. Just as our samples are in fact

finite, they are in fact not truly continuous. Knowing what methods would give us

certainty in an infinite sample (consistent estimation procedures) is a useful guide

to good procedure in finite samples; similarly knowing what methods would give us

certainty with a truly continuous record is a useful guide to good procedure with

actual fine-time-unit, but discrete, data.
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3. Convenient Parametric Models Not Absolutely Continuous with

Respect to Martingales

Since our conclusions cannot be certain, we will want to place probabilistic error

bounds on them. To do so, we will need to formulate a parametric model for the

stochastic process followed by an observed asset price that includes both stochastic

processes equivalent to martingales and stochastic processes that are not.

We first note that there is a well known class of processes some of which over finite

intervals with probability one generate infinite quadratic variation and others of

which with probability one generate zero quadratic variation and infinite total

variation. What Mandelbrot and Van Ness [1968] call "fractional Brownian motions"

have the property that when their parameter H satisfies 0<H<.5, quadratic variation

is infinite with probability one, and when .5<H<1, with probability one quadratic

variation is 0 and total variation is infinite. Much of the literature on fractional

Brownian motion emphasizes the "long dependence" properties of such processes -- the

slow rate at which their autocovariance functions decay toward zero at infinity or

the unboundedness of the spectral density or its derivative at 0. We focus instead

on the processes’ fine time unit properties -- the unboundedness of the derivative of

the autocovariance function at 0 or the slow decay toward zero at infinity of the

spectral density function.

Because the fractional Brownian motions tie the long dependence properties of the

process to the same parameter that determines its fine time unit behavior, they do

not form a practically useful parametric family for modeling asset prices. Building

on work in S. Maheswaran [1990a,b], we show in the appendix that if X is a Gaussian

process with moving average representation
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i(4) X(t) = a(t-s)dW(s) ,
j

pif a(s)/s converges to someε>0 as sL0 from above, and if a(s) is otherwise smooth,

^then for -.5<p<0, not only [X,X] but our estimate [X,X] is infinite with probability

∧
one. Also, if 0<p<.5, then with probability one [X,X] and [X , X] are zero, while VX

is infinite. (Note that our p corresponds to H-.5 in the notation of Mandelbrot and

Van Ness.)

This result opens up a range of practical modeling alternatives. For example, one

+could construct any convenient parametric family of functions b(⋅;β): R LR satisfying

b(0;β)=1, b differentiable in its first argument t for all t>0 and right-differentia-

i 2 2ble at t=0, and t b(t;β) dt<∞. Then letting a in (4) satisfy
j

p(5) a(s) = γs b(s;β)

one has a convenient parametric family of stationary, Gaussian processes allowing

infinite quadratic variation (-.5<p<0), martingale-equivalent behavior (p=0), zero

quadratic variation combined with infinite total (first-order) variation (0<p≤.5),

and zero quadratic variation combined with bounded total variation (1≥p>.5).

For technical reasons it may be worth noting that processes of the class parameter-

ized in (5) are, for -.5<p<.5, p≠0 not only not absolutely continuous with respect to

any martingale measure, they are not semimartingales. That this is true follows

directly from the definition of a semimartingale as the sum of a local martingale and
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a process whose paths have bounded total variation. Since much of the convenient

apparatus of stochastic calculus fails to apply outside the realm of semimartingales,

we should observe that we have here an example where assuming that an asset price

follows a semimartingale is a substantive restriction, not a mere regularity condi-

tion.

4. Comparing Smoothness and Variation-Discrepancy as Criteria for Failure of the No-

Arbitrage Condition

A price process P whose time paths are almost surely absolutely continuously diffe-

rentiable in t is not equivalent to a martingale and offers a simply defined arbi-

5trage opportunity. Suppose we have a proposed rule for choosing over the interval

0≤t≤1 a time path A(t) for holdings of the asset whose price is P(t) and also a path

N(t) for holdings of the numeraire asset. Whatever the rule may be, we can improve

⋅on its performance with zero risk by changing the original N(t) path to N(t)-δP(t)

for any δ>0. To satisfy the original wealth constraint, the new path A*(t) for

holdings of the non-numeraire asset will have to satisfy

⋅d[P(t)](6) dA*(t) = dA(t) + δ--------------------------- .P(t)

But it is easy to check, integrating by parts, that (6) implies

⋅(7) P(t)A*(t) + N(t) - δP(t)

t ( )22 ⋅ 2i P(s) 6= P(t)A(t) + N(t) +δP(t)2 2 2 ds.-----------------j 2P(s)2
0 9 0
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The left-hand side of (7) is just the value of the portfolio under the new rule, and

the right hand side shows that it strictly exceeds the value under the old rule.

Harrison et al [1984] show that arbitrage opportunities exist for differentiable

paths even when they are not absolutely continuously differentiable.

However, as we have already observed, this kind of deviation from the no-arbitrage

condition cannot be detected with certainty from a finite span of data. As the

period over which we observe differentiability lengthens, it would be reasonable for

us to be more and more confident that the discontinuous jumps in P that would recon-

cile observed differentiability with martingale behavior will never occur. But no

finite span of observation can make us certain of this, even with a continuous data

record.

In contrast, the type of deviation from martingale equivalence we focus on in this

paper, which we may as well call "variation discrepancy", can be identified with

certainty from a finite span of data. It is true that checking for variation dis-

crepancy requires observation at arbitrarily fine time units, but of course verifying

differentiability also requires observation at arbitrarily fine time units.

The nature of arbitrage strategies that would exploit the failure of martingale

equivalence via variation discrepancy is an interesting question. As we show in the

appendix, for price processes whose logs are of the form (4), with a given by (5)

with -.5<p<.5, p≠0, it is possible to construct trading rules based on the observed

history of prices that obtain arbitrarily low ratios of standard deviation of return

to mean return. The idea is that one trades at uniform time intervals h, always

investing in the asset when the expected price change over the next interval of
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length h is positive, in the numeraire otherwise. The mean return from such a strate-

gy over a fixed interval goes to infinity as the trading interval h goes to zero.

The standard deviation of the return remains bounded.

As is also shown in the appendix, this possibility implies the existence of an

arbitrage opportunity in the time-zero contingent claims market. The idea is that

though none of these investment strategies is risk-free, as the risk becomes arbitra-

rily small their time-zero value as a random payout must eventually exceed the time-

zero price of the capital necessary to implement them.

In the appendix we also construct purely risk-free arbitrage strategies entirely in

the spot market. The idea is to choose h and the fraction of the portfolio invested

in the asset to make the probability of loss over (0,.5) .25, say. Then if there is

a gain by time t=.5, hold the numeraire until t=1. Otherwise, recalibrate h and the

fraction of the portfolio invested so that the probability of failing to be above the

initial t=0 level of wealth by t=.75 is less than .125. Repeat this indefinitely, at

-jeach date t=1-2 stopping if a profit has been achieved, otherwise intensifying the

transaction rate so that the probability of not achieving a profit over the next

-j-1 -j-2interval of length 2 is less than 2 . This achieves a profit over the inter-

val (0,1) with probability one, using only a fixed initial investment.

5. Conclusion

We have shown that there are usable probability models for price behavior that are

outside the semimartingale class and that may have a role in financial market model-

ing when absence of arbitrage opportunities is not a foregone conclusion. We hope to
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have encouraged the interest of other researchers who may help to discover the

ultimate usefulness of these ideas.

Appendix

A. A Measure-Theoretic Derivation of Martingale Equivalence

We consider two assets, one the numeraire and the other, which we call c, whose spot

price in terms of the numeraire is given by P for t in [0,1]. We assume that theret

are some traders in the market who hold both assets and who care about the total

value of their portfolio at t=1, but not about their asset holdings at intermediate

7points in time. There is a probability spaceΩ and a sigma-fieldF of subsets of

Ω. The information structure, common across all agents, is defined by the increasing

family of sigma-fields {F : t in [0,1]} with F =F. We suppose that trading ist 1

allowed in arbitrary contingent claims on the numeraire asset and c, subject to the

requirement that an asset traded at t can be contingent only on events inF .t

c n + n cLet δ ,δ : FLR denote set functions such thatδ (A) and δ (A) are the prices at time

zero of one unit of the numeraire asset or c, respectively, delivered at t=1 contin-

gent on the true state of the worldω lying in A. Since one unit of either asset can

be delivered regardless of the state of the world at t=1 by simply holding it from

n c c nt=0 to t=1, we must haveδ (Ω)=1, δ (Ω)=P . We also assumeδ ,δ ≥0 for all argu-0

ments, as usual for a price. We take the absence of arbitrage opportunities to imply

that each δ be a measure. That is, it must be true thatδ(∅)=0 and that for any

countable class {A } of disjoint sets inFj

& * & *(A1) δ u A = ∑ δ A .
7 j8 7 j8
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If (A1) did not hold, there would be some class of claims, contingent on a set of

mutually exclusive events, that could be bought separately at a total price different

from the price of an equivalent claim contingent on the union of the separate contin-

gencies. In other words, two equivalent bundles of goods would have different

8prices, which is exactly an arbitrage opportunity.

n cNow suppose that there is no set A inF such that δ (A)=0 and δ (A)>0. For this

condition to fail would imply that there is some contingency under which the numer-

aire is valueless but the other asset is still valuable. This condition means that

c nδ is absolutely continuous with respect toδ . It is a standard result in measure

theory that under these conditions there is an integrable function (the Radon-Nikodym

derivative) Q:ΩLR satisfying

c i n(A2) for every A in F, δ (A) = Q(ω) δ (dω) .
jA

Now it is well known that for any sub-σ-field F of F, there is an integrable,F -t t

measurable function E [Q⋅] on Ω with the property thatt

c i n(A3) for every A in F , δ (A) = E [Qω] δ (dω) .t j tA

We will proceed to show that with probability one P =E [Q].t t

To do so we have to extend ourδ’s to pricing rules for a wider class of payouts than

the simple unit contingent payouts for which they are already defined. It is natural
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to suppose that countable linear combinations of contingent payouts can be priced,

with a payout ofλ >0 units of the numeraire forω in A , priced ati i

& * n(A4) π ∑ λ I(ω;A ) = ∑ λ δ (A ) .
7 i i 8 i i

Here we have represented the payout as a linear combination of indicator functions on

Ω, with π a "pricing function" delivering current prices of payouts specified as

functions on Ω. That this type of payout be priced this way is also a consequence of

a no-arbitrage assumption, assuming that contingent claims are infinitely divisible.

From (A4) π already has the form of an integral, and we can extendπ uniquely to all

npositive δ -measurable functions onΩ by using one further property of arbitrage: if

a payout f on Ω dominates another payout g in the sense that f(ω)>g(w) for all ω
nexcept for a set ofδ -measure 0, thenπ(f)≥π(g). Given this, it must be true that

i n(A5) π(f) = f(ω) δ (dω)
j

9for any F-measurable f .

Consider an arbitrary set A inF . We consider how to value a claim to a unit of ct

contingent on A. We have two feasible ways of delivering one unit of c at t=1

contingent on A: Buy at t=0 a claim to one unit of c contingent on A, or buy at t=0

an asset that pays P units of the numeraire good at t, contingent on A being real-t

ized at t. The proceeds from this asset can be used at t to purchase a unit of c if

A has been realized. We know how to price these two assets. The outright contingent

claim to c is worth at t=0, by (A2)
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c i n(A6) δ (A) = E [Qω] δ (dω)
j tA

while the claim to the P payout contingent on A is worth, by (A5),t

i n(A7) π(P I(ω;A)) = P (ω) δ (dω) .t j t
A

Since absence of arbitrage opportunities implies (A6)=(A7) for all A inF , except ont
na set ofδ -measure one P =E [Q].t t

Observe that so far we have not made any use of the notion of a true or "physical"

probability distribution on Ω. To do so, we need to add an assumption about the

nrelation betweenδ -measure and true probability. It is natural to suppose they are

equivalent, so that no value is given to delivery of a unit of the numeraire contin-

gent on an event of zero probability, and some positive value is given to delivery of

a dollar contingent on any event that has non-zero probability. Then the P stochas-t
ntic process, which we have shown to be a martingale under theδ measure, is equiva-

lent to a martingale under the true probability measure.

pB. Properties of Processes with MA Kernel Behaving like s Near the Origin

Consider a process X of the form (4) with a of the form (5), satisfying

i) b(0)≠0;

ii) b(s) right-continuous in s at s=0;

iii) b ′(s) exists and is bounded and continuous;

iv) -.5<p<.5.
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(Here we have suppressed the argumentβ in (5).) It is convenient to define

∆ X(t) = X(t)-X(t-h) .h

Lemma 1: For an X satisfying (i)-(iv), for every integerj

-(2p+1) & * 10(A8) R (j) = h Cov ∆X (t),∆X (t-jh) [----------L R(j) ;h 7 h h 8 hL0

and there exists aC>0, not dependent onh, such that for all j>0,

p-1(A9) Cj > R ( j) for - . 5<p<0,h
2p-1Cj > R (j )  for 0<p< . 5 .h

Proof:

∆ X(t) has moving average kernelα (s), with α (s)=a(s), 0≤s<h, α (s)=a(s)-a(s-h) forh h h h

s≥h. Thus we can write for j≥1
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h2p+1 i p& p p *h R (j) = b(s)s (s+jh) b(s+jh)-(s+jh-h) b(s+jh-1) dsh j 7 8
0

∞
i & p p*& p p *(A10) + b(s)s -b(s-h)(s-h) (s+jh) b(s+jh)-(s+jh-h) b(s+jh-h) ds .
j 7 87 8
h

h
i 2 pFor j=0, the first term in (A10) is replaced by2b(s) s ds .
j
0

Suppose in (A10) or the corresponding expression for j=0 we make the change in

variables s=vh. Then it is straightforward to check that, by the boundedness of b

2p+1and its derivative, the two integrals in (A10) behave like h as hL0 for any fixed

p p p-1j. (Checking this does require noting that v -(v-1) behaves like v as vL∞, and

is thus integrable for p<.5.) Further, there is a constant C>0 such that the first

integral on the right-hand side of (A10) is bounded above in absolute value by

1 ‘ ‘2p+1i p‘ p p‘ 2p+1 p-1(A11) Ch v ‘(v+j) -(v+j-1) ‘dv < Ch j
j ‘ ‘
0

for j≥2, where the generic "C" may be different on the two sides of (A11). This

follows by noting that, using a Taylor expansion of the second factor in the middle

expression of (A12) below,

( ) ( )1 1p p1 p p1 p 2 2 2 2 p-11 v v-1 1(A12) 1(v+j) -(v+j-1) 1 = j = j12----- + 12 -2-------------- + 12 11 1 1 j j 12 2 2 2
1 19 0 9 0

With the same change of variable we can bound the second integral on the right-hand

side of (A10) by
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∞ ∞2p+1i p-1 p-1 2p+1i 2 p-1Ch v (v+j) dv = Ch (v +vj) dv
j j
1 1

2p+1 2p-1(A13) ≤ Ch j .

Here as before we use a generic constant "C" that may take on different values in

different expressions. Note that when p<0 (A11) becomes the effective bound on

(A10), while when p>0 (A13) is the effective bound.p

∧ a.s.hLemma 2: For p>0, [X , X] ----------L 0 as hL0.1

Proof:

From (A8) it is easy to conclude that

-1∧ h
# h$ # 2$ 2p(A14) E [X , X] = E ∑ ∆ X(jh) behaves like h as hL0 .
3 14 3 h 4j=1

∧ 2pSince [X , X] >0 with probability one, the fact that h in (A14) goes to zero with h1
∧ hfor p>0 implies that for this case [X , X] converges in probability to zero as hL0.1

jBy choosing a sequence h that converges fast enough to zero (h =δ for any 0<δ<1,j j
11for example) we can make the convergence almost sure.

∧ a.s.hLemma 3: For p<0, [X , X] ----------L ∞ as hL0.1
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Proof:

First we need

Lemma 4:

For X and Z jointly Gaussian,

22 2 & *(A15) Cor(X ,Z ) = Cor(X,Z) .
7 8

In (A15) "Cor" means "correlation".

For p<0, (A9) implies that R is absolutely summable. Then (A8)-(A10) can be used,h

together with (A15), to show

∧-4p-1 & h*(A16) h Var [X , X] ----------L ε .
7 18 hL0

h -.5Thus the ratio of the mean of [X,X] to its standard deviation behaves like h and1
hgoes to infinity as hL0. This guarantees that [X,X] converges in probability to1

infinity as hL0 for p<0. Again, by choosing a sequence of h’s converging rapidly

enough to zero, we can attain convergence with probability one.p

It remains then to show

Lemma 5: The paths ofX will be of unbounded variation when0<p<.5.

Proof:
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Observe that

-1h p ph p p(A17) V (1) = ∑ p∆ X(j/h)p .X p h pj=1

The individual random variables in the sum on the right-hand side of (A9) have

p+.5expected value bounded below by a term of the form Ch , C>0, so the entire term

p-.5has expectation bounded below by a Ch term that goes to infinity as hL0.

For jointly Gaussian random variables Y and Z with correlationρ,

& * 2(A18) Cor Y,Z behaves likeρ as ρL0 .
7 8

hThis, together with (A9), allows us to conclude that the standard deviation of V (1)x
1-2pbehaves like h for small h and thus again to conclude that we have convergence in

probability to infinity, with convergence almost surely if the h sequence is taken to

converge quickly enough to zero.p

C. Arbitrage Strategies

Since non-martingale-equivalent price processes must present arbitrage opportunities,

it is interesting to explore what these might be. For spot prices Q whose logari-t

thms q follow processes of the type considered in Appendix C above, we can constructt

arbitrage strategies as follows. First we observe the properties of the following

type of investment: At date 0, invest $1 (one unit of the numeraire) in the asset if

E [∆ q ]>0, hold on to the $1 (invest it in the numeraire) otherwise. Continue to0 h h

follow this rule, investing the entire current accumulation of wealth in the asset
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when E [∆ q ]>0, keeping it in the numeraire otherwise, with the portfolio beingt h t+h

adjusted according to this rule at each date t that is an exact integral multiple of

h. Over the fixed interval [0,γ], if W is the value of the portfolio at date t, wet

have

# p $
# $ γ # $ p # $ 12(A19) E log W = ---------- E 2E q -q p E q -q > 02 .03 γ4 2h 0 t3 t+h t4 p t3 t+h t4

3 p 4

Now E [q -q ] is the "explained part" of∆ q , based on all information in thet t+h t h t+h

continuous record of q up to time t. It therefore has larger variance than the best

predictor of ∆ q based on∆ q alone. By (A8) we know that the latter varianceh t+h h t
2p+1 2p+1behaves like h , and is thus bounded below, for p≠0 and small h, by Bh for

some B>0. Assuming q is Gaussian, (A19) is just the expectation of a truncated

Gaussian variable and is therefore proportional to the standard deviation of the

p-.5variable. From the form of (A19), we can see that it is bounded below by B h for1

some B >0, so long as p≠0. With -.5<p<.5, we can thus conclude that expected return1

over the interval [0,γ] is arbitrarily large for h small enough.

To determine the variance of the return we denote the return over one h-length

interval as

& # $ *(A20) y = ∆q ⋅I E ∆q > 0 ,t+h t+h 7 t3 t+h4 8

where I(⋅) is a random variable taking on the value one when its argument is true and

zero otherwise. Then the autocovariance function of y satisfies, fori-j≥1,
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( )p-1 2p+1
‘ ‘ 2Ki-j h , -.5<p<0 2
‘ & *‘(A21) ‘Cov y ,y ‘ ≤ { } .
‘ 7 ih jh8‘
‘ ‘ 2 2p-1 2p+1 2Ki-j h , 0<p<.5

9 0

This set of inequalities follows from (A9) and the fact that for any two jointly

Gaussian random variables X and Y with correlation coefficientρ and any functions f

and g such thatf(X) and g(Y) have finite first and second moments, the corre-

lation of f(X) and g(Y) is 0(ρ) as ρL0. The variance of W is the variance of theγ
sum of the y ’s over the (0,γ) interval and is thus bounded byih

γ/hγ π-1 2p+1(A22) ----- ∑ Kj h ,h j=-γ/h

where π=p for p<0, π=2p for p>0. This is in turn bounded above by

( )pπ 20(h ), p<02γ &γ* 2p+1(A23) ----- K ----- h = { } ,h 7h8
20(1) , p>02
9 0

where the value of the constant K may shift between its occurrences in (A22) and

p-.5(A23). Since we found above that the expected return is bounded below by B h , we1

can apply (A23) to find that the ratio of expected return to its standard deviation

p-.5 .5(p-1)goes to infinity as hL0, behaving as h for 0<p<.5 and as h for -.5<p<0.

The strategies we have outlined here do not directly produce a risk-free gain, of

course, since there is always some non-zero variance to the return they provide.

They can be used to develop strictly risk-free arbitrage opportunities in two ways.
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First, in the presence of contingent claims markets, it must be true that as risk

goes to zero while expected return remains bounded below, the value of contingent

claims to the payout must converge to a number greater than the initial capital

required. Thus there will be an arbitrage opportunity in the contingent claims

market.

To produce an arbitrage opportunity in the spot market, we apply a strategy that

looks like the classic doubling strategies for martingale processes. Apply the

strategy outlined above over the time interval (0,.5), with h and the fraction of the

initial portfolio committed to the investment strategy in this initial period chosen

so that the probability of losing any money over the interval is less than .25. If

at t=.5 we have made a profit, we stop and hold our winnings until t=1. Otherwise,

we readjust h and the fraction of our portfolio invested so that the probability of

our wealth being below the initial t=0 level at t=.75 is less than .125. That is, we

choose h so that the expected gain over (.5,.75) is high enough, and the variance low

enough, that we will be above the initial wealth level at t=.75 with probability

-j.875. Now we repeat this indefinitely, at each time 1-2 either stopping, because we

have achieved a profit, or intensifying the rate of trading so as to increase the

expected rate of return and make the probability of failing to achieve a profit by

-j-1 -j-2the end of the next interval of length 2 less than 2 . It is easily seen that

the probability of never achieving a profit during the time interval (0,1) is zero.

Further, the total number of transactions required to implement the strategy will be

finite, though there is no deterministic upper bound on the number of transactions

that will be required.

C. Proof of the Theorem
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First we need another result.

Lemma 6: A purely discontinuous local martingaleX that has a.s. no more than a

single point of discontinuity has locally absolutely integrable variation.

Remark: This lemma may appear more obvious than it is. A martingale with a randomly

timed jump consists in general of two components, the jump part and a "compensator"

with continuous sample paths. The work in the proof is to show that the compensator,

besides being continuous, necessarily has finite variation.

Proof: Let T be the stopping time defined as the date at which X jumps. Then the

"sum of jumps" process for X is

(
20, t<Ts(A24) ∆X = { .-t 2X(T)-X(T), t≥T

s≤t 9

This process is obviously a.s. of finite variation. It is also locally of absolutely

integrable total variation. To see this, observe that we can define the sequence of

stopping times

( )
(A25) T = lim inf {2t: X(t)>n}2n 9 0

Tnso that T L∞ a.s. and the stopped martingales X are all absolutely integrable. Ton
Tnsimplify notation we denote X by X . We haven

( )
2 - 2 -(A26) X (T) = 2X (T)-X (T)2 + X (T) .n 2 n n 2 n
9 0
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-X (T) and X (T) are by construction absolutely integrable, which implies that then n

term in brackets must be also. Thus the process

( )
2 2T2 2 ns s(A27) ∆X = 2 ∆X2

t n t
2 2s≤t 2s≤t 2
9 0

is absolutely integrable and the process∑∆X itself is locally absolutely integrable

(i.e., in A ). But then, by Jacod and Shiryaev [1987] Theorem 3.18, there is aloc

predictable process

( )
2 2p2 2
s(A28) 2 ∆X2 in A ,
t loc

2 2
2s≤t 2
9 0

unique up to an evanescent set, such that

( ) ( )
2 2 2 2p2 2 2 2
s s(A29) 2 ∆X2 - 2 ∆X2
t t

2 2 2 2
2s≤t 2 2s≤t 2
9 0 9 0

is a local martingale. By the uniqueness of (A28), the process displayed in (A29)

must be X itself (up to an evanescent set). Otherwise, the difference between X and

(A29) would be a non-zero local martingale with no discontinuities, and the assump-

tion of pure discontinuity for X implies it contains no such component. Since both
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terms in (A29) have been verified to lie inA , their difference, X, is in Aloc loc

also. p (lemma)

Now consider the result we are aiming for, restated here.

Theorem: If X is a local martingale, with probability one there is no interval[0,t]

with t>0 such that[X,X] =0 and V (t)=∞.t X

TProof: Consider the stopping time T = lim inf {t: [X,X] >0}. The stopped process X ,t
Tdefined as X (t)=X(tyT) (with tyT=min(t,T)), is a local martingale with at most one

discontinuity -- a possible jump at T. Therefore by the lemma it has bounded varia-

tion with probability one. Since [0,T] is the longest interval on which [X,X]

remains zero, we have proved the result.p
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------------------------------------------------------------------------------------------------------------------------
1Our approach uses a slightly different set of primitives than the original Harrison-

Kreps approach. By defining an arbitrage opportunity more broadly, we are able to

use measure-theoretic structure more heavily and avoid explicitly introducing a

topology on payoff functions.
2The word "local" here is used in the special sense of continuous time stochastic
process theory. We do not attempt to define it here, but readers unfamiliar with it
can note that a martingale is also locally a martingale and can refer to Jacod and
Shiryayev [1987] for more detail.
3We will henceforth simply call this the quadratic variation.
4Note that this estimate is a random variable chosen to approximate another random
variable -- [X,X] -- and not a conventional statistical estimator of a nonrandomt
parameter.
5This assertion might seem to contradict the earlier claim that we can never be sure
that a smooth price process is not drawn from a martingale-equivalent process. The
arbitrage opportunity demonstrated here depends on it beingcertain that the price
process is differentiable.
6From (6) we have

t
i P̈(s)A*(t)-A*(0) = A(t)-A(0)+ δ2 ----------------- dsP(s)
j
0

p t t
p ⋅ i & ⋅ *2
p P(s) P(s)= A(t)+δp ----------------- + 2 2-----------------2 ds
p P(s) P(s)
p j 7 8
0 0

This yields (7) when multiplied by P(t).
7This rules out assets that have dividend or interest payments or that provide a
utility yield as they are held. The martingale equivalence result proved below can
be extended to assets that do have such yields. Yields must occur in a continuous
flow rather than as discrete payouts at isolated dates, but otherwise the extension
puts little restriction on the nature of yields. Such an extension is displayed in
Sims [1984].
8We should observe, though, that it is probably more conventional to require only
that finite collections of contingent claims sell at the same price as a claim
contingent on the union of the contingencies they represent. Countable additivity is
then derived from a separate assumption of continuity in some topology on the space
of return functions.
9Note thatπ(f) may be infinite if f is unbounded.
10We will sometimes below state conditions like (A10) in the form "f(h) behaves like
g(h) as hL0", meaning "f(h)/g(h)Lε as hL0 for someε≠0".
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11E[X ]=0(δ(j)), where δ(j) decreases monotonically to 0 as jL∞, impliesj
P[X >ε]=0(δ(j)). By choosing k(j) to increase rapidly enough in j, e.g. so thatj

-1 -j -jk(j)=δ (2 ), we can make P[X >ε]=0(2 ), and thus guarantee thatk(j)
∞ a.s.
s P[X >ε] ----------L 0 , i.e. X ----------L 0 .
t k(j) k(j)iL∞i=j

12Since log(W )=0, log(W ) is the sum of the changes in logs of W over the length-h0 γ
decision intervals. The unconditional probability that E [q -q ]>0 is .5, and thet t+h t
expected change in the log portfolio value during periods when it is kept entirely
invested in the numeraire is 0. Thus the right-hand-side of (A16) is just the
unconditional expectation of the change in log portfolio value over a typical
interval, multiplied by the number of intervals. This argument does depend on E0
being the same as unconditional expectation, which requires that the process "start
up" at time 0 with zero innovation process before that.
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