
ECO 518a Spring 2018

VAR EXERCISE

The course web site has, in the same directory with this file describing the exercise, monthly
data on three components of the produce price index: raw materials, intermediate goods,
and final goods. The file pdat.RData has the three series already logged and stored as an
R multiple time series object. There are also three .xls files containing the raw data for the
three series. The files VARpack2019.zip and optimize.1.zip contain R packages that you can
install “locally” in R and then load with the R library() function. You don’t have to use
these packages or R.

(1) Plot the data. (e.g. plot(pdat) in R). Note that the materials index is the least smooth
and the final goods index the most smooth of the three series.

(2) Estimate a VAR for these three series. Use 6 lags. This can be done easily with
the rfvar3() function in the VARpack2019 package. That function uses the persis-
tence dummy observations from the Minnesota prior. You can use it with the default
weights on the prior. If you use other software, it is not essential that you use a prior.

(3) Check the roots of the system, which is most easily done by setting up the coefficient
matrix for the stacked system and calculating its eigenvalues. The sysmat() function
constructs the stacked-system coefficient matrix from the rfvar3() output. Observe
whether the rule of thumb that suggests treating roots within 1/T of 1.0 as 1 suggests
1 unit root. (If you use rfvar3() with the default prior weights, you will probably
see this.)

(4) Plot impulse responses for the system, with the default Cholesky ordering, for exam-
ple with

resp <- impulsdtrf(vout,nstep=48)

plotir(resp))

Do the results suggest an approximate Granger causal ordering?
(5) Estimate a VECM model for these data, imposing the assumption that there are two

cointegrating vectors. First try setting the cointegrating vectors to be [1, 0, -1] and
[0, 1, -1], then use a nonlinear optimizer to start from these guessed cointegrating
vectors and search for the optimal cointegrating coefficients. The ([1, 0, -1], [0, 1, -1])
pair has an economic interpretation: it implies that the relative prices are stationary,
while the individual price time series are not.

Note that the cointegrating vectors have to be normalized; use the normalization
that the 3 x 2 cointegrating vector matrix has the identity in its top 2 x 2 submatrix
(leaving just two free coefficients to be estimated).

The program vecmlh(), available as a text file on the course web site, calculates
the integrated posterior density under a flat prior as a function of the two free coeffi-
cients in the cointegrating vectors, and returns minus the log marginal data density.
The program’s beta argument must be a dimensioned matrix, representing the part
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2 VAR EXERCISE

of the cointegrating vector matrix that is below the normalized identity matrix —
that is, in our case, a 1 x 2 matrix. (The program is more complex than necessary
for this exercise. The only part of the calculated return value that depends on the
cointegrating vectors is the degrees of freedom times the log of the determinant of
the crossproducts of residuals. The other terms are useful only if one is making com-
parisons across models with different numbers of lags or cointegrating vectors.) You
can use vecmlh() as an argument to an optimization function — csminwelNew()

from the optimize.1 package or R’s built-in nlm(). Note that the arguments veclm()
beyond the first, have to be passed through to it as named arguments to the optimiza-
tion function. Also note that if you start the optimization far from the optimum, it is
possible to get stuck at a local peak of the likelihood (i.e. local minimum of minus
the likelihood).

By looking at what happens to the integrated posterior density (or just log of the
determinant of the residual crossproduct matrix, times degrees of freedom), assess
whether the cointegrating vectors are sharply determined. Differences in logged in-
tegrated posterior densities are logs of odds ratios. They are usually thought of as
small if the differences in log odds are smaller than 2 to 4.


