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NOTES ON REGRESSION WITH t-DISTRIBUTED ERRORS

The R code posted with the exercise may not be easy to interpret. Here is the math the
code implements.

The model is

yt = Xtβ + εt (1)
εt

σ
| X ∼ t(ν) , (2)

where ν is the degrees of freedom parameter for the t distribution. The likelihood for the
sample is therefore, using τ(·; ν) to denote the pdf of the t(ν) distribution,

σ−T
T

∏
t=1

τ

(
yt − Xtβ

σ
; ν

)
.

If we want to do model comparison, we need to use a proper prior on β and σ, but if
we are only comparing models with differing values of the explicit parameters β, σ, and
ν, we can use the likelihood as the posterior (i.e. treat the prior as flat in the relevant
range). [Note, thugh, that as we discussed in class a flat prior on the degrees of freedom
itself produces a non-integrable likelihood, which therefore cannot be used for MCMC
evaluation of the posterior when we sample ν along with other parameters. A flat prior
on 1/ν over its range of (0, 1), though, is equivalent to a prior pdf of 1/ν2 on (1, ∞) for ν
itself, which is integrable.]

This likelihood can be calculated in a single line of R or matlab code, and one could
use it to implement random walk Metropolis posterior simulation for the joint posterior
distribution of β, σ for fixed ν, or jointly, sampling ν as well as the other parameters. You
might try this, to see if it works better than the approach below, but this is not required.

A random variable that has a t(ν) distribution has the same distribution as z/
√

w/δ,
where z ∼ N(0, 1), w ∼ χ2(δ), and z and w are independent. In other words, a t(ν)
random variable can be thought of as a normal random variable with a randomly chosen
variance. This lets us introduce an auxiliary sequence of random variables, {wt} to denote
the inverses of the random variances of the residuals {εt/σ}. This idea, of introducing
additional unobserved random variables to make MCMC sampling easier to implement
is known at data augmentation. Then instead of using the t pdf itself, we can write the
joint density of y and w conditional on β, ν and σ2 as

Γ(ν/2)−T 2−Tν/2
T

∏
t=1

(
w

ν
2−1
t

)
e−

1
2 ∑T

1 wt σ−T(2π)−T/2e−∑T
1 wt(yt−Xtβ)2/(2νσ2) . (3)

With σ, ν and {wt} held constant, this likelihood behaves, as a function of β, like a nor-
mal pdf with mean the weighted least-squares estimate, where the {wt} are the weights
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on the cross products, and covariance matrix σ2(∑ wtX′
tXt)−1. We know how to calculate

these objects and hence how to generate a draw from this normal distribution.
With {wt}, ν and β fixed, the likelihood as a function of σ is proportional to

σ−Te−∑ ε̂2
t /(2νσ2), (4)

where ε̂t is yt − Xtβ. (Note, the ε̂t is not the least squares residual or the weighted least
squares residual. It is the residual calculated using our (previous) random draw of β.) The
likelihood as a function of 1/σ2 is therefore proportional to a Gamma(T

2 + 1, ∑ wt ε̂
2
t /(2ν))

pdf. (This implies

E[1/σ2] =
T + 2
∑ wt ε̂2

t
,

which makes sense.
Each individual wt enters the likelihood in a separate factor, proportional to (with other

parameters fixed) (
w

ν
2−1
t

)
e−

1
2 wt(1+

ε̂2
t

σ2 ) . (5)

This is proportional to a Gamma(ν/2, 1
2(ε̂

2
t /σ2 + 1)) pdf, which again we know how to

sample from.
As a function of ν, the likelihood is not in a handy form. One could take a “Metropolis-

within-Gibbs” step to sample from it, if one used the 1/ν2 prior, but for this exercise
we will simply hold ν fixed at various values and see how inference changes. In order
to compare marginal likelihood for different vaues of ν, we have to apply a modified
harmonic mean or bridge sampling method to the sampled likelihood values, which you
were not asked to do on the exercise.

So if you want to write your own code to implement the sampler you need for the
exercise, it should be a loop with three stages

(i) Estimate β by weighted least squares and calculate the covariance matrix of β. Use
these results to draw from the conditional normal distribution of β.

(ii) Form the residual vector from the regression and use it to make a draw from the
inverse-gamma distribution of σ2 (the pdf (4) above).

(iii) Draw a new {wt} sequence using the gamma distributions for the individual wt’s
(the pdf’s (5) above).

The tshock() function on the web site actually does these steps in the order (iii, i, ii), but
of course the order doesn’t matter. Also tshock() works with weights that are scaled
by σ2, instead of the wt’s in these notes.

A version of tshock() that includes comments blocking out these sections of the loop
and explaining the use of the qr component of R’s regression output is now on the web
site. This version also generates log likelihood marginalized over the weight values in-
stead of the log likelihood at particular weight vectors, which was what the previous
version produced.


