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What is a Bayesian perspective?

A Bayesian perspective on scientific reporting views all data analysis
as reporting of the shape of the likelihood in ways likely to be useful to
the readers of the report. We examine moment-based inference from that
perspective.
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What is special about GMM and IV?

1. They are not derived from likelihood.

2. They are used mostly with only asymptotic theory to guides statements
about uncertainty of inference.

3. They are appealing because the assumptions they force us to make
explicit — the moment conditions — often are intuitively appealing or
even emerge directly from a respectable theory, while they allow us to
sweep under the asymptotic rug “auxiliarly” assumptions.

4. They lead to easy computations.
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Which of these are actually pluses?

• 1 and 2 are defects, and some Bayesians have taken the view
that IV and GMM methods are just mistakes, because their lack
of likelihood foundation and small sample distribution theory makes
Bayesian interpretation of them seem difficult.
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Which of these are actually pluses?

• 1 and 2 are defects, and some Bayesians have taken the view
that IV and GMM methods are just mistakes, because their lack
of likelihood foundation and small sample distribution theory makes
Bayesian interpretation of them seem difficult.

• But 4, computational convenience, is certainly an advantage and a reason
that Bayesians should not dismiss IV and GMM.

• And 3, while problematic, reflects a legitimate desire for inference that
is not sensitive to assumptions that we sense are somewhat arbitrary.

3



Do asymptotics free us from assumptions?

4



Do asymptotics free us from assumptions?

• The short answer: no.

4



Do asymptotics free us from assumptions?

• The short answer: no.

• The usual Gaussian asymptotics can be given either a Bayesian or a
non-Bayesian (pre-sample) interpretation. The Bayesian interpretation is
that asymptotics gives us approximations to likelihood shape. (Kwan,
1998)

4



Do asymptotics free us from assumptions?

• The short answer: no.

• The usual Gaussian asymptotics can be given either a Bayesian or a
non-Bayesian (pre-sample) interpretation. The Bayesian interpretation is
that asymptotics gives us approximations to likelihood shape. (Kwan,
1998)

• If we wish to characterize the implications of a particular sample, we may
decide that asymptotic theory is likely to be a good guide, or we may
not. This is a decision-theoretic judgment call. We know, usually, that
there are conditions on the true model that would imply that asymptotics
are a good guide for this sample. Actually using the asymptotic theory
amounts to judging, without explicit discussion, that it is ok to assume
these conditions are met.
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Examples of the “freedom from assumptions” fallacy:
kernel methods

• Frequency domain methods in time series, kernel methods for regression.
Frequency domain methods are “non-parametric” in comparison to
ARMA models in the same mathematical sense that kernel methods
are non-parametric in comparison to parametric polynomial regressions.
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Examples of the “freedom from assumptions” fallacy:
kernel methods

• Frequency domain methods in time series, kernel methods for regression.
Frequency domain methods are “non-parametric” in comparison to
ARMA models in the same mathematical sense that kernel methods
are non-parametric in comparison to parametric polynomial regressions.

• In time series, after an initial burst of enthusiasm, the fact that there
is no true increased generality in use of frequency-domain methods sank
in (possibly in part because for any application involving forecasting, the
FD methods are inconvenient). In cross-section non-parametrics, one
still finds econometricians who think that kernel methods require “fewer
assumptions”.
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• Using kernel methods in a particular sample with a particular model
obviously requires that the true spectral density or regression function
not be badly distorted by convolution with the kernel. This greatly
limits the class of admissible spectral densities or regression functions, in
comparison with the class allowed by the asymptotic theory.
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• Using kernel methods in a particular sample with a particular model
obviously requires that the true spectral density or regression function
not be badly distorted by convolution with the kernel. This greatly
limits the class of admissible spectral densities or regression functions, in
comparison with the class allowed by the asymptotic theory.

• There is a well defined topological sense in which it can be shown that
a countable, dense class of finitely parameterized models is as “large” as
the classes of functions that are allowed by the smoothness restrictions
required for kernel-method asymptotics.
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IV and GMM as assumption-free

• They make assertions about the distributions of only certain functions of
the data — not enough functions of the data to fully characterize even
the first and second moments.
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IV and GMM as assumption-free

• They make assertions about the distributions of only certain functions of
the data — not enough functions of the data to fully characterize even
the first and second moments.

• They limit their assertions to a few moments, hence do not require a
complete description of the distribution of even those functions of the
data about which they do make assertions.
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Embedding IV and GMM in a framework for inference

• Required: An explicit set of assumptions that will let us understand what
we are implicitly assuming in applying IV or GMM in a particular sample,
and thereby also let us construct likelihood or posterior distributions.

8



Embedding IV and GMM in a framework for inference

• Required: An explicit set of assumptions that will let us understand what
we are implicitly assuming in applying IV or GMM in a particular sample,
and thereby also let us construct likelihood or posterior distributions.

• Approach 1: Find assumptions that make the asymptotic theory exact.
This may involve using the sample moments on which IV or GMM are
based in somewhat different ways.

8



Embedding IV and GMM in a framework for inference

• Required: An explicit set of assumptions that will let us understand what
we are implicitly assuming in applying IV or GMM in a particular sample,
and thereby also let us construct likelihood or posterior distributions.

• Approach 1: Find assumptions that make the asymptotic theory exact.
This may involve using the sample moments on which IV or GMM are
based in somewhat different ways.

• Approach 2: Choose from among the models that are consistent with
the asymptotic theory, a model that is “conservative”, either in the sense
that it is robust (a good approximation to a large class of models) or
that it draws the weakest possible inferences from the data, given the
explicit assumptions.
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Examples of these approaches: Approach 1

• LIML: Normality assumptions on disturbances imply both a likelihood
function and asymptotic theory that matches that of IV.

• An analogue to LIML for GMM? If GMM is based on E[g(yt, β) | zt] = 0,
then in the LIML case we are providing a (linear) model, not dependent
on β, for the distribution of ∂g/∂β | zt. For GMM, it is not obvious that
a linear model for this object is appropriate, and there are apparently
many possible choices. There may be work on this issue of which I am
not aware, but it seems ripe for exploration.
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Examples continued: Approach 2

Empirical likelihood: Treat the joint distribution of data and parameters
as concentrating all probability on the observed data points and as generated
from a uniform distribution over all probabilities on those points that satisfy
the moment restrictions. The usual procedure is then to find the mode
of this distribution jointly in the probabilities of the data points and the
parameters. But one can also take a Bayesian perspective and integrate
over the probabilities to get a marginal on the parameters. Of course the
assumption of probabilities concentrated on the observed points would be a
terrible approximation for certain purposes.
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Zellner BMOM: assume it is exactly true that E[Z ′u | y] = 0, where
this is the sample cross-moment matrix for observed instrument matrix Z
and unobserved error vector u in the current sample, with expectation over
the distribution of the parameter given the data. Then find the maximal
entropy distribution for {β | data} under this assumption. This exactly
justifies the usual IV asymptotics and thus is an example of both approach
2 and approach 1. Of course the usual models out of which IV arises do
not justify the basic assumption made to generate BMOM, except as an
asymptotic approximation.
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Kitamura and Stutzer maximal entropy GMM: Treat the joint distribution
of data and parameters as concentrated on the observed data points. Derive
the maximal entropy distribution of the parameters given the data under
this assumption plus the moment restrictions. Closely related to empirical
likelihood. More clearly “conservative”, but harder to give a complete
Bayesian interpretation: It generates a posterior, but it’s not clear what
joint distribution of data and parameters would lead to this posterior via
Bayes’ rule.
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Can we do better?

• Both entropy-maximization and searching for exact theory that supports
the use of asymptotics are useful ideas. Even exact theory (like BMOM)
that requires strange assumptions is helpful in make it clear what we are
implicitly assuming when we use the usual asymptotics.
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Can we do better?

• Both entropy-maximization and searching for exact theory that supports
the use of asymptotics are useful ideas. Even exact theory (like BMOM)
that requires strange assumptions is helpful in make it clear what we are
implicitly assuming when we use the usual asymptotics.

• But the BMOM assumption and the “probability concentrated on the
observed points” assumptions are obviously unattractive.

• Gaussianity assumptions do emerge from maximizing entropy subject
to first and second moment restrictions, which suggests that where
normality assumptions lead to tractable likelihoods consistent with the
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asymptotics, normality may be a conservative assumption.
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• However entropy is a slippery concept. It is not invariant to
transformations of the random variable. More reliable, in my view,
is the notion of mutual information between random variables. This
is the expected reduction in entropy of the distribution of one random
variable after we observe another random variable. It is invariant to
transformations, which is another way of saying it depends only on the
copula of the two jointly distributed variables.
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• However entropy is a slippery concept. It is not invariant to
transformations of the random variable. More reliable, in my view,
is the notion of mutual information between random variables. This
is the expected reduction in entropy of the distribution of one random
variable after we observe another random variable. It is invariant to
transformations, which is another way of saying it depends only on the
copula of the two jointly distributed variables.

• We can imagine deriving conservative models that minimize the mutual
information between data and parameters subject to moment restrictions.
I have explored this idea a bit. It is clear that it will only work with
proper priors, and that it will not deliver exactly standard GMM except
as a limiting case.
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Applying these ideas

• IV and GMM have two widely recognized breakdown regions: “Weak”
instruments, and “overabundant” instruments. We mistrust the
implications of conventional asymptotic inference in these situations,
but non-Bayesian procedures give us little guidance in characterizing our
uncertainty.

• Likelihood description here provides better guidance about the nature of
uncertainty.
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A simple model

y
T×1

= xβ + ε = Z
T×k

γβ + νβ + ε (1)

x
T×1

= Zγ + ν (2)

Var([νβ + ε ε]) = Σ (3)

or

y = zθ + ξ (4)

x = zγ + ν (5)

θ = γβ . (6)
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• When we use the parametrization (1-2), likelihood does not go to zero
as β →∞, no matter what the sample size.

• This can create problems for naive Bayesian approaches — MCMC not
converging, integrating out nuisance parameters creating paradoxes.

• A flat prior on (θ, γ) with no rank restrictions does produce an integrable
posterior if the sample size is not extremely small.

• It therefore seems promising to use Euclidean distance to define a metric
on the reduced-rank submanifold of (θ, γ), then transform the flat prior
(Lebesgue measure) on this submanifold to β, γ coordinates. This
derivation does not in itself actually guarantee that posteriors under this
improper prior will be proper, but it is a promising approach.
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• The improper prior on β, γ that emerges from this approach is

∣∣∣∣∣ ∂Π

∂(β, γ)

(
∂Π

∂(β, γ)

)′∣∣∣∣∣
1
2

= ‖γ‖ (1 + β2)
1
2 . (7)

It does lead to proper posteriors.

• Even with this prior, however, the posteriors decline only at a polynomial
rate in the tails, and the degree of the polynomial does not increase with
sample size. This is in contrast with the posteriors under a flat prior in a
linear regression model, where the tails decline at a polynomial rate that
increases linearly with sample size.
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Boomerang IV

Consider now what this means when we combine a prior that has
Gaussian tails or tails that decrease as a high-order polynomial with the
likelihood weighted by (7). If we start with the prior mean and the likelihood
peak lined up with each other, then let the likelihood peak move away from
the prior mean while keeping the shapes of the likelihood and the prior
pdf fixed, the posterior mean, median and mode move away from the prior
mean (as expected) at first, but then reverse direction, coming back to
coincide with the prior mean when the likelihood peak is very far from the
prior mean. This is illustrated graphically in the figure.
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Weak instrument case

In a sample where the posterior is highly non-Gaussian and has
substantial, slowly declining tails, even apparently very weak prior
information can substantially affect inference. The graphs displayed here
show the effects of imposing a N(0, 100I) prior on β, γ jointly in a model and
sample that imply an estimated β around 1 in magnitude, with substantial
uncertainty. Even this weak prior has a dramatic effect on the posterior,
largely by eliminating extremely spread-out tails. Certainly posterior means
would be greatly affected by including such weak prior information.
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methods

To prepare these graphs I generated MCMC artificial samples of size
10,000, sampling successively from the conditional likelihoods of {β | γ,Σ},
{γ | β,Σ}, and {Σ | γ, β}, which are all of standard forms, then applying
a Metropolis-Hastings step to reflect the influence of the prior. When
the prior is not used, very large values of β occur in the sampling, and
when β gets so large, dependence of β on ‖γ‖ is very strong. As is well
known, heavy dependence produces slow convergence of Gibbs samplers.
The Figures illustrate how the use of the prior improves the convergence
properties of the Gibbs sampler, by eliminating the extremely large draws of
β.
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