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MORE ON TIME SERIES REGRESSION

1. RATIONAL FORECAST REGRESSION

e It is indeed standard practice in models involving overlapping multi-step fore-
casts like the y; = a + BF; + €, model we discussed last time, to base infer-
ence on the approximation

Var(Bors) = (X’X)1X'QX(X'X)L,

which is exact for the model with exogenous X and E[eg'] = Q.

e For the k-step forecast model, because the X’s are not exogenous, it is not true
that Var(e | X) = ), even though unconditionally E[ee'] = Q.

e Nonetheless under some regularity conditions, satisfied for example when the y
and F vectors are jointly normal, the standard variance matrix formula becomes
accurate asymptotically. Proving this is not terribly hard, but we don’t have
time for it.

e Note that this kind of regression equation is the building block for the expecta-
tional theory of the term structure of interest rates, among others.

2. LIKELIHOOD-BASED INFERENCE FOR THE FORECAST REGRESSION MODEL

e One can’t do likelihood-based inference here without taking a stand on how the
F’s depend on the y’s.
e Simple case: k = 2, all the dependence is taken care of with one lag:
Yt = a10 + a1y + «nFe1 + 171
Fr = a20 + ap1ys—1 + apk1 + 172,
where we are assuming that E;j;1 = 0 (and that the unsubscripted 7 is the two
17j’s stacked).
e Letting X; = [y; F;]/, this is in the form X; = ¢+ AX;_1 + #:. By substituting
this equation into itself we arrive at
Xiyo =c+ Ac+ A% X + 51 + An_q,
from which we can read off E;[X; ]
o If we want to test, then, that E;[y; 2] = F;, we actually are testing that
(X%l + X120p1 = O
X111 + 06%2 =1
a110010 + 2020 = 0.

So we should explore the likelihood to see how much probability is near the
region where these constraints are satisfied.
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MORE ON TIME SERIES REGRESSION

3. FINDING THE UNCONDITIONAL DISTRIBUTION TO USE FOR IC’s

e In a pure AR model with i.i.d. &;, assuming there is a stationary unconditional
joint distribution for {yi,...,y;_¢41}, it is a matter of some slightly messy alge-
bra to derive the covariance matrix of initial conditions from the ps’s and o2,

e The AR model is

14
Ve=0a+ ) Psyi—s + €.
s=1

e Assuming Ey; is constant across ¢, Eyy = a/ (1 — Y ps).
e Assuming Cov(ys, yi—s) = Rs = R_s, we can use the AR equation to derive

4
Rs =) PsR|s_y_1| +6,0%s=0,...,10.
v=1
Using these equations for s = 0,...,¢ — 1, we have ¢ equations in the ¢ un-
knowns Ry, ..., Rs, from which, under normality, we can construct the covari-
ance matrix of y,,...,y_; and hence, under normality, the joint distribution of
the initial conditions.

e Note that this whole argument obviously depends on a) the sum of the ps’s
not being 1 (for the mean calculation) and b) on the existence of a solution for
the Ry’s in which they can be used to populate a covariance matrix [R|;_;| that
turns out to be positive definite. In particular, we must have Ry > 0 in the so-
lution. This is not automatic. There are ps vectors that imply that no stationary
distribution for the y’s exists.

e Using this approach to forming a distribution for initial conditions is only pos-
sible if nonstationary behavior for y is ruled out a priori. The conditional like-
lihood does not take a special form in such nonstationary cases, and they may
represent economic behavior we don’t want to rule out.
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