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MORE ON TIME SERIES REGRESSION

1. RATIONAL FORECAST REGRESSION

• It is indeed standard practice in models involving overlapping multi-step fore-
casts like the yt+k = α + βFt + εt+k model we discussed last time, to base infer-
ence on the approximation

Var(β̂OLS) = (X′X)−1X′ΩX(X′X)−1 ,

which is exact for the model with exogenous X and E[εε′] = Ω.
• For the k-step forecast model, because the X′s are not exogenous, it is not true

that Var(ε | X) = Ω, even though unconditionally E[εε′] = Ω.
• Nonetheless under some regularity conditions, satisfied for example when the y

and F vectors are jointly normal, the standard variance matrix formula becomes
accurate asymptotically. Proving this is not terribly hard, but we don’t have
time for it.

• Note that this kind of regression equation is the building block for the expecta-
tional theory of the term structure of interest rates, among others.

2. LIKELIHOOD-BASED INFERENCE FOR THE FORECAST REGRESSION MODEL

• One can’t do likelihood-based inference here without taking a stand on how the
F’s depend on the y’s.

• Simple case: k = 2, all the dependence is taken care of with one lag:

yt = α10 + α11yt−1 + α12Ft−1 + η1t

Ft = α20 + α21yt−1 + α22Ft−1 + η2t ,

where we are assuming that Etηt+1 = 0 (and that the unsubscripted η is the two
ηj’s stacked).

• Letting Xt = [yt Ft]′, this is in the form Xt = c + AXt−1 + ηt. By substituting
this equation into itself we arrive at

Xt+2 = c + Ac + A2Xt + ηt + Aηt−1 ,

from which we can read off Et[Xt+2]
• If we want to test, then, that Et[yt+2] = Ft, we actually are testing that

α2
11 + α12α21 = 0

α11α12 + α2
22 = 1

α11α10 + α12α20 = 0 .

So we should explore the likelihood to see how much probability is near the
region where these constraints are satisfied.
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2 MORE ON TIME SERIES REGRESSION

3. FINDING THE UNCONDITIONAL DISTRIBUTION TO USE FOR IC’S

• In a pure AR model with i.i.d. εt, assuming there is a stationary unconditional
joint distribution for {yt, . . . , yt−ℓ+1}, it is a matter of some slightly messy alge-
bra to derive the covariance matrix of initial conditions from the ρs’s and σ2.

• The AR model is

yt = α +
ℓ

∑
s=1

ρsyt−s + εt .

• Assuming Eyt is constant across t, Eyt = α/(1 − ∑ ρs).
• Assuming Cov(yt, yt−s) = Rs = R−s, we can use the AR equation to derive

Rs =
ℓ

∑
v=1

ρsR|s−v−1| + δsσ
2 s = 0, . . . , ℓ .

Using these equations for s = 0, . . . , ℓ − 1, we have ℓ equations in the ℓ un-
knowns R0, . . . , Rs, from which, under normality, we can construct the covari-
ance matrix of yo, . . . , y−ℓ and hence, under normality, the joint distribution of
the initial conditions.

• Note that this whole argument obviously depends on a) the sum of the ρs’s
not being 1 (for the mean calculation) and b) on the existence of a solution for
the Rs’s in which they can be used to populate a covariance matrix [R|i−j|] that
turns out to be positive definite. In particular, we must have R0 > 0 in the so-
lution. This is not automatic. There are ρs vectors that imply that no stationary
distribution for the y’s exists.

• Using this approach to forming a distribution for initial conditions is only pos-
sible if nonstationary behavior for y is ruled out a priori. The conditional like-
lihood does not take a special form in such nonstationary cases, and they may
represent economic behavior we don’t want to rule out.
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