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Something we should already have mentioned

A t,(u, ) distribution converges, as n — 0o, to a N (u, X).

Consider the univariate case, where the t,,(0,1) pdf is

L(*5) (2 =\
g ) |

Using the calculus fact that (14 a/n)™ — e* as n — oo, it is easy to show
that the part of the pdf that depends on x converges to exp(—(z — u)?/2).

Note also that the ¢ distribution has moments only up to order v — 1.
So it does not have a moment generating function.



Stein’s result

In the standard normal linear model, with a loss function of the form

(68— B)’W(B — B) with W p.s.d., the OLS estimator of kﬁl is admissible
X

for kK < 2, but not for k > 2.

He proved this by constructing an estimator that dominates OLS.
However, his estimator is also not admissible.

Bayesian posterior means with proper priors are of course admissible.

However, only a narrow class of them dominates OLS, and the class will
vary with W.



e So long as an estimator is admissible, that it also dominate OLS is not
necessarily desirable.

e These results reflect standard good practice in applied work. When there
are many regressors, everyone understands that it is possible to make the
predictions from OLS regression estimates turn out badly by including
regressors whose estimates have high standard errors. So researchers
exclude variables based on prior beliefs.

e But it might be better sometimes to formulate priors explicitly
probabilistically, instead of excluding variables informally.



Maximum Likelihood Estimation
The MLE of 8 is the value of 6 that maximizes p(Y |8).

It may not exist.
It is rarely justifiable as a Bayesian estimator.

While it is often thought of as a non-Bayesian estimator, it is not generally
unbiased and does not generally have any other good properties except
being a function of sufficient statistics.

Under general conditions that we will study later, it has “approximately”
good properties when the sample size is large enough.

It is usually the starting point for the task of describing the shape of the
likelihood. But there are some cases where it is by itself not much use:
many local maxima, all of similar height; cases where the peak of the LH
is narrow and far from the main mass of probability.



Set Estimation

This is a procedure that is hard to rationalize from a Bayesian perspective,
so we'll come back to that at the end.

A 100(1 — )% confidence set for the parameter 6 in the parameter space
© is a mapping from observations Y into subsets S(Y) C © with the
property that for every § € ©, Pl € S(Y)|0] = (1 — «).

1 — « is the coverage probability of the interval.

Such a mapping may not exist, so the definition is commonly relaxed to
say that S(Y) is 100(1 — «)% interval if

min P[0 € S(Y) 0] =1—«.
0cO



What is “confidence’” ?

e |t is in practice nearly always treated as if it represented posterior
probability. In both popular press and applied economic literature you
will see a result that a 95% interval S(Y') for 6 has realized value (a,b)
described as a result that “it is 95% sure that 6 is between a and b" or
“the probability that 8 is between a and b is 95%" .

e So is it connected to posterior probability? Yes, to some extent.

e In the SNLM, confidence sets generated in the usual way (which we will
see shortly) have, under a flat prior on 8 and log o, posterior probability
equal to their coverage probabilities.



e In general, a 100(1 — «)% confidence set must have posterior probability
of at least 1 —~ with unconditional probability at least 1 —a/v. So, e.g.,
an interval with coverage probability .99 must have posterior probability
at least .9 for a set of Y's with pre-sample probability (accounting for
uncertainty about 6 via the prior) at least .9.

e For 95% confidence sets this result is pretty weak: 95% intervals must

have posterior probability at least .9 with unconditional probability at
least .5.

E[P[0 € S(Y)|Y]| = E[P[0 € S(Y)]] = E[P0 € S(Y)|0]] =1 — .



Example: Bounded interval parameter space

We are estimating ;& which we know must lie in [0, 1]. We have available
an estimator /i with the property that {fi|Y} ~ N(u,.1%).

A 95% confidence interval for  is therefore (i &= .196.

Notice that the fact that we know p € [0, 1] did not enter the calculation
of the confidence interval. In fact to keep it a subset of the parameter
space, we must make the interval {1 +.196} N[0, 1].

With non-zero probability, the confidence set is empty.

With non-zero probabiity the confidence set is a very short interval,
with very small posterior probability, which conventional mistaken
interpretations would treat as indicating great precision of the inference.



Example: Red-green color blind at the traffic light

A witness to a traffic accident is red-green color blind, but can perfectly
distinguish yellow. The traffic light is unusual, arranged horizontally. The
witness, we have determined, does not like to admit colorblindness, and
when asked the color of red and green objects simply announces one or the
other color at random, with equal probabilities.

His deposition in this accident states that he observed the traffic light,
and it was yellow.

Do we say “with 100%" confidence the light was yellow”, or “with 50%
confidence the light was yellow"?



Both statements could be valid, but we would have had to commit
before seeing the witness’'s answer to how we would behave if he reported
red or green. If we would say “with 50% confidence the light was red”
when the report was red, then we have to quote the same confidence level
when the light is yellow. But if when the report is red we would say instead
“with 100% confidence the light was either red or green”, then we are using
a 100% confidence set and we should say the light is yellow with 100%
confidence.

Of course this is ridiculous. The posterior probability of yellow given
the report of yellow is 1.0, regardless of the prior, so every sensible person
would simply say the light was surely yellow, and the fact that the witness
was red-green color blind is irrelevant, given that the light was not in fact
red or green.
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“Significant” and “insignificant” results
What we say here applies about equally to confidence sets and to
minimum-size posterior probability sets.

There is a big difference between a result that posterior probability is
concentrated in a small (from the point of view of the substance of the
problem) region around 3 = 0 and the result that the sample data is so
uninformative that the posterior probability is spread widely, with a 95%
HPD region therefore including 8 = 0.

The former says we are quite sure that 5 is substantively small. The
latter says 3 could be very big, indeed from looking at the data alone
seems more likely to be big in absolute value than small in absolute value.

Yet is is not uncommon to see one regression study, which found an
“insignificant” effect of a variable X, cited as contradicting another
study which found a “significant” effect, without any attention to what
the probability intervals were and the degree to which they overlap.
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