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1. GIBBS SAMPLING: WHY IT WORKS

2. DATA-AUGMENTATION
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4. CHECKING CONVERGENCE AND ACCURACY

5. GLS

• This is the framework for several standard extensions of the SNLM. Of course
extensions of a model always imply specification tests (via looking at posterior
odds between a model and the extended version).

• We replace the assumption Var(ε) = σ2 I with Var(ε) = σ2Ω.
• If Ω is known, the same sort of algebra that led us to the result that in the SNLM

with dσ/σ prior we get a normal-inverse-gamma posterior on σ2 and β leads
us in this model to a different normal-inverse-gamma posterior:

β̂GLS = (X′Ω−1X)−1X′Ω−1y

û = y − Xβ̂GLS{
1
σ2

∣∣∣Y, X
}

∼ Gamma(1
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2 û′Ω−1û){
β |Y, X, σ2

}
∼ N

(
β̂GLS, σ2(X′Ω−1X)−1)

6. EXAMPLES OF Ω’S

• Conditional heteroskedasticity: ωij = 0, i ̸= j, ωii = σ2g(Xi, α).
• General serial correlation: ωij = σ2ρ(i − j). I.e., Ω is constant down all diago-

nals. (ρ(0) = 1 as a normalization, or else omit σ2.)
• First-order autoregressive serial correlation: ρ(s) = ρ(1)s. So all of Ω is a func-

tion of a single parameter.
• Spatial correlation: ωij = σ2ρ(δ(i, j)), where δ measures “distance”.
• The cluster model: y indexed by, say, state i and county j. ω(i, j, k, ℓ) = 0 if i ̸= k

(i.e. for observations from different states). ω(i, j, i, ℓ) = σ2ρ(i, j, ℓ). Ω is block
diagonal, if observations are grouped by state. This is a difficult model, easily
leading to complicated likelihood functions. There is only a small amount of
literature, all technically demanding, on the properties of the estimators. It
is available with a single “button-push” in STATA, so it is widely used, even
treated as standard in some fields, despite weak understanding of its properties.
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7. OLS ANYWAY?

• OLS is unbiased, no matter what Ω might be. Its presample distribution is

β̂OLS ∼ N
(

β, σ2(X′X)−1X′ΩX(X′X)−1)
• The unbiasedness is “robust” against non-scalar Ω, but to make any claims

about precision of our estimates, we need to estimate Ω anyway.
• If σ2 is known, and we observe Y′X and X′X but not Y and X separately, the

posterior distribution under a flat prior on β is of exactly the same form as the
normal presample distribution for β̂OLS, with the mean at β̂OLS.

• However if σ2 is unknown, information on Y′X and X′X alone does not tell us
much about σ2. If we add Y′Y to the list of observed statistics, we can derive
Bayesian inference, but it will imply a nasty distribution for σ2 and thus not the
usual s2 estimate based on OLS residuals.

• Still, often in large samples the uncertainty about σ2 is small, so that even
though û′û/T is not the best possible estimate of σ2, it is so accurate that treat-
ing σ2 as known is reasonable.

• So using OLS as a convenient shortcut when we have an estimate of Ω has
a Bayesian interpretation, so long as there is not much uncertainty about σ2,
given the sample.

8. ESTIMATING Ω

• Ω contains T2 elements, which reduce to T(T + 1)/2 free parameters when we
take account of symmetry restrictions. (If σ2 is also a free parameter, at least
one element or function of elements, of Ω has to be normalized to some fixed
value, so the total number of free parameters stays the same.)

• As you might suspect, estimating Ω with a flat prior therefore doesn’t work.
The number of free parameters in the model exceeds the number of observa-
tions, and by a larger amount the larger is T.

• So we must always either use an informative prior on Ω, and accept that the
prior will affect inference even in large samples, or else treat Ω as a function of
a finite number of parameters that does not grow, or grows only slowly, with
sample size.

• This reflects a more general point: improper priors are reasonable only when
we can expect that the likelihood will dominate the prior. We will see that this
is likely to be true in large samples under broad regularity conditions. But if
the number of parameters grows linearly in T or faster, there is usually no hope
that the likelihood dominates the prior.

9. FEASIBLE GLS

• This is GLS with Ω estimated, always by making it a function of a smaller num-
ber of parameters.
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• Commonly in practice, one starts with OLS, forms ûOLS, uses these estimated
residuals as if they were the actual ε’s to form an estimate Ω̂ of Ω, then ap-
plies the GLS formulas with Ω̂ replacing Ω, ignoring the fact that Ω̂ is only an
estimator.

• How can this be justified? There are large-sample justifications that we will
consider later. They consist of showing that when the sample is large there is
little cross-dependence between Ω and β in the likelihood, so that inference that
accounts for uncertainty in Ω is not much different from inference that treats
estimates as exact.

• However this relies on the number of free parameters in Ω being small. We
don’t actually usually have solid a priori knowledge about Ω, so there is a ten-
dency to push the limits, using fairly large numbers of free parameters. So in
practice it is not uncommon for inference about β to be rather strongly affected
by whether we account for uncertainty in Ω.

10. GIBBS FOR GLS

It is clear that a nice Gibbs sampling scheme is available for GLS:
(i) Fix Ω, apply GLS to get a standard posterior for

{
β, σ2 |Ω

}
and make a draw

from it.
(ii) Use the draw of β to form residuals, and use these and the draw of σ2 to form a

conditional pdf for Ω. This can of course ignore uncertainty about σ2 and β, but
the inference is sometimes not straightforward. Might need Metropolis-within
Gibbs or the like.

11. CAN IT HAPPEN THAT GLS≡OLS EVEN THOUGH Ω ̸= I?

• Yes.
• The condition is that Ω X

T×k
= XΛ, for some k × k Λ. This means that the

columns of X are in the space spanned by k eigenvectors of Ω. This may seem a
knife-edge special case, but there is one situation where it is fairly often relevant
in practice.

• If X contains a column of ones, as it usually does, and if Ω = I + λ11′, we are
in the special case. And such an Ω matrix arises if we assume that correlation
among residuals arises because εi = ν + ξi, where ξi is i.i.d. and ν is a common
error component.

• Note, though, that even though β̂OLS = β̂GLS, X′Ω−1X ̸= X′X. And the usual
two-step approach to feasible GLS won’t work here. Since the model is implic-
itly

yt = β0 + X1tβ1 + ν + εt , (1)
and there is only one ν in a given sample, we cannot hope to separate β0 from
ν by looking at the data.


