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Point estimation as a decision problem
• General decision problem: choose δ(Y ) to minimize

E[L(θ, δ(Y )) |Y ] .

• Estimation: We want to observe Y , then set δ as close as possible to θ.
I.e.,

L(θ, δ) =M(ρ(θ, δ)) ,

where ρ is a metric (a measure of distance between points) and M is an
increasing function.

• Examples of ρ: Ordinary Euclidean distance
√∑

(a2i ), uniformmax(|ai|),
absolute deviation

∑
(|ai|).

• There are different versions of estimation, depending on the form of
M(ρ(·)).
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Estimation with quadratic loss

• M(ρ(a)) = a′Wa, where W p.s.d.

• Regardless of what W is, optimal δ is δ(Y ) = θ̂(Y ) = E[θ |Y ].

• Proof: Suppose δ(Y ) = δ̂(Y ) + γ(Y ), with γ(Y ) not zero. Then

E[L(θ, δ(Y )) |Y ]

= E
[
(θ− θ̂(Y ))′W (θ− θ̂(Y ))+2(θ− θ̂(Y ))′Wγ(Y )+γ(Y )′Wγ(Y ) |Y

]
= E

[
(θ − θ̂(Y ))′W (θ − θ̂(Y )) |Y ] + γ(Y )′Wγ(Y ) ≥ L(θ, θ̂(Y )) .
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Estimation with absolute error loss

• M
(
ρ(a)

)
=

∑
wi |ai|

• Regardless of the wi’s, it is optimal to choose δ(Y ) = θ̌ such that
P [θi < θ̌i |Y ] = .5, i.e. θ̌ is the element-wise median of θ |Y .

• Notice that if θ is β in the SNLM with a conjugate prior, θ̂ = θ̌ and both
are OLS applied to the data augmented by dummy observations.
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Non-Bayesian approaches to estimation

• Consider candidate δ(Y )’s, check the properties of the distribution of
δ(Y ) | θ. There are a variety of properties for this distribution that are
considered desirable.

• δ(Y ) is an unbiased estimator for θ if and only if E[δ(Y ) | θ] = θ for
every θ.

• While this sounds kind of reasonable, it is important to note that it is
quite different from the criterion for an optimal estimator under quadratic
loss, which is instead E[θ |Y ] = δ(Y )]. Indeed, if E[δ(Y )2] < ∞, it is
impossible that an unbiased estimator coincides with E[θ |Y ].
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• Proof: E[(δ(Y )− θ)θ] = 0, by definition of conditional expectation and
E[δ(Y ) | θ] = θ. But

E[(δ(Y )− θ)θ] = E[−(δ(Y )− θ)2] + E[(δ(Y )− θ)δ(Y )]

= −Var(δ(Y )− θ) < 0,→← ,

unless of course θ ≡ δ(Y ) so there is no estimation error at all.

• Note that this result does depend on there being a proper prior, so that
the unconditional expectation of θ is defined.
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