Eco517 Fall 2014 C. Sims

FINAL PROBLEM SET AND SUGGESTIONS FOR REVIEW

(1) Suppose y; = u + €, with ¢; a stationary Gaussian AR(1) process satisfying
er = pe;1+ v, vt | {er—s,8 >0} ~ N(0,0?). Consider the following three
approaches to estimating y from a sample of y values, assuming we know p =
9,0 = .01

(a) OLS, i.e. just estimate y as the sample mean of y’s.

(b) Quasi-differencing, i.e. replacing y; by y; — py;—1 and the constant vector 1
by 1 — p times the constant vector and applying OLS. (This is GLS, except
for omitting the first observation — make sure you understand why.)

(c) Full GLS, including the initial observation.

For each of the TH and [[d, approaches, find the formula for the posterior mean fi
and its posterior standard error in terms of y, assuming a flat prior on y and the
known ¢? and p. Also, calculate the actual ji and its standard deviation from
these two samples of size 10, both of which are artificial samples from the true
model, and the sample mean. Both samples have p = .9, 0> = .01. The true
means generating the samples are 0 and 10, respectively. Is it a surprise that (if
my calculations are correct) the simple arithmetic mean gives a more accurate
(in the sense of closer to the true value in this sample) estimate in one case? [My
calculations weren’t right. Full GLS is the most accurate in these two samples,
though quasi-differencing is the worst in both.]

—.0006 —0.0705 0.128 0.137 0.285 0.0985 —-0.146 —0.157 —0.0523 0.0309
10.0000 10.0558 9.951 9910 9.791 9.8767  9.705 9.722 9.8225 9.8273

The results are

sample 1 sample 2
ols 0.0253  9.8661
gd 0.0597  9.6786
gls 0.0188  9.8970

The quasi-differenced results (“qd” in the table) are worst, even though they are
asymptotically efficient, just like GLS. This is expected, since quasi-differencing dis-
cards the information in the first observation, and in this small sample that is discard-
ing a lot. GLS, which is maximum likelihood and the flat-prior posterior mean in any
sample size under the normality assumption (met here in generating the data), is
best. But the differences in accuracy here are small, and there is no guarantee that
the estimator with the best statistical properties is the best estimator in any given
sample. | thought | had an example of a sample in which this happened, but it turns
out not.
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FINAL PROBLEM SET AND SUGGESTIONS FOR REVIEW

(2) Here’s a sample of a variable Y; that takes on values only in the set {0,1}. We
have two models available for the data, each of which generates a probability
p; = P[Y; = 1] for each i. (These might be logit or probit models.) Here is the
sample, and the p;’s for the two models:

Y (1 0 1 1 1 1
Model1p| 01 1 9 9 9 9
Model2p| 02 2 8 8 8 .8

Calculate the log likelihood for the two samples and also the R? for the two
samples. (The R? is just the sum of squared “errors” Y; — p; divided by the sum
of squared deviations of the Y; values from their sample mean.)

The R? and likelihood measures rank the two models differently. [The first
version of this exercise had probabilities in the table that failed to make the two
measurs disagree.| This must be because they penalize different kinds of errors
differently. What is it about this sample that makes them differ?

With this modified sample, the likelihoods are -5.131973 and -5.027741, respec-
tively, so the second model is favored. The R?’s are negative: -0.23612 and -
0.39248, respectively, so the first model is favored. (Though the negative R? values
show that just setting p = .83333, the sample mean of Y, would give lower mean
squared error. The second model has twice the error (.2 vs. .1) for five of the six
observations, and somewhat smaller error for the first observation. But because the
models’ predictions for that first observations are very precise — very low probabil-
ities on the actual Y = 1 value — likelihood gives great weight to that observation
and thus ends up favoring model 2.
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(3) Here’s another sample of a zero-one random variable Y, this time together with
an explanatory variable X:

Y[1111100000

X\12345678910

(a) Show that for both a probit and a logit model in which Y is explained as a
function of X and a constant, the likelihood for this sample is not integrable.
The likelihood has the form JT; p(x;)¥/(1 — p(x]-))l_yf As discussed in the re-
view session, the problem here is that the coefficient on X and the constant
term can go to infinity in absolute value without forcing the likelihood to zero.
All the smaller values of X have corresponding Y = 1, while all the larger ones
have Y = 0. Both models generate p(a + XpB) that must lie between zero
and one. If we set « = —5.58, then p(a + XB) = p((X — 5.5)B). Both mod-
els make p(0) = .5. The more negative is B the larger is p((X — 5.5)8) for
X < 5.5 and the smaller it is for any X > 5.5. Thus pushing B toward —oco
makes the likelihood steadily increase toward its upper limit of 1.
This is all the argument | expected. It shows that if you took a one-dimensional
integral along the « = —5.58 line in a, B space, the result would be infinite.
But this doesn’t quite prove that the two-dimensional integral over the whole
«, B space is zero, since the likelihood might drop off more and more steeply
on either side of the line as we moved out the line. As a student pointed out in
the review session, though, this does not happen in these cases. | omit going
through the calculus of the argument here, since it was not expected in your
answer.

(b) Show that with a conjugate prior, there is an integrable posterior density in
both cases.
It is a general result that with any proper prior, the posterior density is inte-
grable, so a lazy-clever answer is that no calculation is necessary, so long as
the conjugate prior is proper. A proper conjugate prior can be generated via
dummy observations. Since there are two parameters, two dummy observa-
tions are needed. For example, X1 = 1,Y7 =1, X, = 1,Y, = 0 is a pair
that would work. Dummy observations do not necessarily generate a proper
prior, even if there are as many dummy observations as parameters — here,
for example, if Y, were 1, so both dummy observations were the same, they
would not generate a proper prior (and would not generate a proper posterior
in this example). However, a single dummy observation of X =1, Y = 0 would
generate a proper posterior, as that observation alone would drive the posterior
to zero as B went to —oo. All that is required is some observation that breaks
the monotone relation in the sample between X and Y.

(c) Show that for the linear probability model with the same Y and X the like-
lihood itself is integrable.
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Again following the argument given in the review session: The likelihood for
the LPM is zero if for any X in the sample it turns out that a« + Xp is outside
the interval [0, 1], since that means the model is implying an impossible value
for P[Y = 1 | B] for that X. But in this sample, X ranges from 1 to 10. The
difference between the values of « + X at X = 1 and X = 10 is therefore 98.
But since all the values must lie between 0 and 1, the difference between these
probabilities is less than or equal to one in absolute value. Thus || < 1/9.
With B restricted to this range, « € (—1/9,10/9) if we are to avoid predicted
p’s outside the [0, 1] interval. The likelihood is bounded, so with it also positive
only over a bounded set, it is integrable. In other words, in the LPM the posterior
will be integrable even if the prior is flat.

[None of these questions Ba-Bd should require calculation or even much alge-

bra.]

(4) We've seen in class that we can interpret GLS as replacing the original Y and
X data from a regression equation with Y* = WY and X* = WX, where
W-1(W=1) = O = Var(e | X). One then just calculates the least squares es-
timates for the transformed data and uses the usual ¢%(X*' X*)~! covariance
matrix. It is then still possible, though, to use a heteroskedasticity-consistent
covariance matrix (HCCM) for the least squares estimates based on the trans-
formed data. Since we have already corrected for heteroskedasticity, would this
be pointless? Why or why not?

It would be pointless if we were sure we had the correct () (remembering that
in principle we can have () dependent on X). But GLS is consistent even if we
have the wrong (), just as OLS is. So using a HCCM covariance matrix protects
(asymptotically) against the possiblity that we have an incorrect model for () just
as it does with OLS, where the “possibly incorrect model” is Q3 = ¢?I. The same
tradeoffs arise, of course — HCCM standard errors will be less accurately estimated
than the GLS standard errors if the model for () in GLS is correct. If one has done
a careful job of modeling (), using HCCM errors might be thought to be more likely
to simply deteriorate the quality of inference than when we apply HCCM to OLS,
where no attempt has been made to model ().
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(5) The course web site has a data set, (in two formats, Guns . csvand Guns .RData)
that is drawn from data that John Lott used in research that argued that passage
of “right-to-carry” laws reduced violent crime. (A “right-to-carry” law creates
a presumption that applications to be allowed to carry firearms in public will
be approved). This is a complicated issue and a complicated data set. Lott him-
self used county-level data, while this data set has state-level aggregates for 51
states and 23 years. Of course the laws themselves were passed at the state level,
but some control variates are available at the county level. Lott and his critics
used more elaborate specifications and more detailed data. We're just trying
modeling methods on it.

(a) Estimate a linear equation relating the violent crime rate vio to percent
black pb1064, average income avginc, population density density, and
the right-to-carry dummy shall. Note that the right-to-carry variable
seems to have a strong negative effect on violent crime. [In the R data set,
shall, stateid, and year are all “factors”, meaning that they are stored
as grouping variables. If you enter the regression formula as
vio ~ pbl064 + ... shall,

R’s 1m () automatically creates the needed dummy variable and gives you
the coefficient on what it labels as shalll. When in the next part you add
stateid, it creates the necessary 50 non-redundant state dummies.]

(b) Estimate the same model, but now with state fixed effects. (In R, just add
stateid as an additional term in the formula.) Note changes in the esti-
mate of the fixed effect.

(c) Using the formula for the random effects likelihood in the notes posted
with this exercise, find the maximum likelihood estimate of the idiosycratic
error and of the state random-effect error, and use them to compute the
maximum likelihood coefficient estimates and their standard errors. The
maximization can be calculated analytically as a function of the between
and within sums of squared errors.

(d) Describe a Gibbs sampling scheme, alternating between drawing coeffi-
cient estimates and variance parameters, for generating draws from the
joint posterior on these parameters. (You do not need to program it and
execute it, though you can do so if you have time and are interested.) Be
explicit about what distributions you are drawing from at each stage, and
about how you would choose a proper prior. The notes on random effects
almost do this for you, but they do not explain how to set up a proper
conjugate prior that will allow Gibbs sampling.

In the interest of getting these answers out at least 24 hours before the exam, |
don’tinclude the numerical results for the estimation or the details of the Gibbs sam-
pling which were in the notes posted. The proper prior that allows use of pure Gibbs
sampling would have to correspond to a conjugate prior generated with dummy ob-
servations that are given the same covariance structure as we assume for the true
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data. But this just amounts to adding dummy observations on the model variables
and treating them as data. There have to be enough dummy observations to imply a
proper conditional distribution of the parameters given the two variance parameters,
i.e. 5 (counting the constant). Then independent inverse-gamma priors as marginal
priors for T2 and T2 + o> (not independent on T2 and ¢%) would make the posterior
have the same form as the likelihood, as shown in the notes on random effects as a
weighted average.



