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1) The likelihood of obtaining a sequence of T zeros is

p (X|ε) = (1− ε)T

Taking a prior on ε that is Beta (p, q), then we have

p (ε|X) ∝ p (X|ε) p (ε) ∝ (1− ε)T
εp−1 (1− ε)q−1 = εp−1 (1− ε)T+q−1

This is the kernel of a Beta (p, T + q) distribution. The exact density of
ε|X is therefore

p (ε|X) =
Γ (p + T + q)
Γ (p) Γ (T + q)

εp−1 (1− ε)T+q−1

The expectation of interest is therefore given by

E

[
1
ε
| {X1, ..., XT }

]
=

∫ 1

0

1
ε

Γ (p + T + q)
Γ (p) Γ (T + q)

εp−1 (1− ε)T+q−1
dε

=
∫ 1

0

Γ (p + T + q)
Γ (p) Γ (T + q)

εp−2 (1− ε)T+q−1
dε

=
Γ (p + T + q) Γ (p− 1)
Γ (p) Γ (p− 1 + T + q)

∫ 1

0

Γ (p− 1 + T + q)
Γ (p− 1) Γ (T + q)

εp−2 (1− ε)T+q−1
dε

Note that the integrand is the denstiy of a β (p− 1, T + q) random variable and
therefore integrates to 1. We then have

E

[
1
ε
| {X1, ..., XT }

]
=

Γ (p + T + q) Γ (p− 1)
Γ (p) Γ (p− 1 + T + q)

Using the fact that Γ (k) = (k − 1) Γ (k − 1) we can simplify this expression
to find that

E

[
1
ε
| {X1, ..., XT }

]
=

p + T + q − 1
p− 1

a) The β distribution nests the uniform(0, 1) distribution and this occurs
when p = q = 1. This expectation is infinite in this case regardless of the value
of T .

b) When p = 3, and q = 2 we get

E

[
1
ε
| {X1, ..., XT }

]
=

T + 4
2

and as T →∞ so does E
[
1
ε | {X1, ..., XT }

]
.
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1 Obtaining posterior predictive densities for the
SNLM with noninformative priors

In vector notation, the standard normal linear model is given by

Y |β, σ2, X˜N
(
Xβ, σ2I

)

The prior that we are asked to use is

p
(
β, σ2

)
∝ 1

σ

The posterior is then proportional to

1
σ

(
1
σ

)T

exp
(
− 1

2σ2
(Y −Xβ)′ (Y −Xβ)

)

=
(

1
σ

)T+1

exp
(
− 1

2σ2

(
Y −Xβ̂ + X

(
β̂ − β

))′ (
Y −Xβ̂ + X

(
β̂ − β

)))

=
(

1
σ2

)T+1
2

exp
(
− 1

2σ2

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+

(
β − β̂

)′
X ′X

(
β − β̂

))

=
(

1
σ2

)T+1
2

exp
(
− e′e

2σ2

) (
σk |X ′X|

−1
2

)
σ−k |X ′X| 12 exp

( −1
2σ2

(
β − β̂

)′
X ′X

(
β − β̂

))

From this we can see that the posterior of β|σ2 is N
(
β̂, σ2 (X ′X)−1

)
. We can

integrate the above with respect to β and obtain an expression proportional to
the marginal of σ2. That expression is

(
1

2σ2

)T−k−2
2

(e′e)
(T−k)

2 exp
(
− e′e

2σ2

)

This means that under the prior p
(
β, σ2

)
∝ 1

σ , 1
σ2 has a Γ (T − k,e′e) dis-

tribution.
In summary, we found that

β|σ2˜N
(
β̂, σ2 (X ′X)−1

)

1
σ2

˜Γ
(

T − k

2
,e′e

)

We are given new data X̃ from 2004, and we want to use this to predict
the outcome of 2004, ỹ. If we knew what the parameters of the model

(
β, σ2

)

are, then ỹ would have a normal distribution with mean X̃β and variance σ2.
However, there is only uncertain knowledge of the model parameters, and this is
summarized by their posterior distribution. In short, the sources of uncertainty
in the posterior predictive density of the election outcome are
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1. The variability of the model represented in the variance in Y represented
by σ2 not explained by Xβ.

2. The posterior uncertainty in β and σ2 summarized by p
(
β, σ2|Y )

=
p

(
β|σ2, Y

)
p

(
σ2|Y )

which we found before.

To draw from the posterior predictive distribution we can first draw
{
βi, σ

2
i

}N

i=1

from p
(
β, σ2|Y )

, and then draw {ỹi}N
i=1 from N

(
X̃βi, σ

2
i

)
. That is, for each

draw of βi, σ
2
i , take a draw from a N

(
X̃βi, σ

2
i

)
.

To draw from p
(
β, σ2|Y )

, first compute β̂ and (X ′X)−1. Second, compute
e′e. Third, draw σ2 from the inverse gamma distribution. Finally, draw β
from the normal distribution.

We can also determine the posterior predective density analytically. First,
consider p

(
ỹ|σ2, y

)
. It can be shown that this is a normal distribution, and its

mean can be found as follows

E
[
ỹ|σ2, Y

]
= E

(
E

[
ỹ|β, σ2, y

] |σ2, Y
)

= E
[
X̃β|σ2, Y

]

= X̃β̂

The variance can be found as

var
(
ỹ|σ2, Y

)
= E

[
var

(
ỹ|β, σ2, y

) |σ2, Y
]
+ var

[
E

{
var

(
ỹ|β, σ2, y

)} |σ2, Y
]

= E
[
σ2I|σ2, Y

]
+ var

[
X̃β|σ2, Y

]

=
(
I + X̃ (X ′X)−1

X̃ ′
)

σ2

Therefore ỹ|σ2, Y ˜N
(
X̃β̂,

(
I + X̃ (X ′X)−1

X̃ ′
)

σ2
)
. If we average out σ2, it

can be shown that ỹ|Y is distributed multivariate t with center X̃β̂, scale matrix
e′e

T−k

(
I + X̃ (X ′X)−1

X̃ ′
)

and T − k degrees of freedom.
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