
Eco517 Fall 2004 C. Sims

EXERCISE DUE 10/5

(1) Consider the model we discussed in class as an example of where the SLLN ought
not to be relied on to justify estimating an expectation as a sample mean of i.i.d.
draws. That is,

Xt =

{
0 w.p. 1− ε
ε−2 w.p. ε

Discuss how the posterior mean of theXt ’s (i.e., E[1/ε |{X1, . . . ,XT}]) behaves as
a function ofT whenT successive observations ofXt = 0 are drawn. Consider the
following two cases:
(a) The prior pdf forε is uniform on (0,1).
(b) The prior pdf forε is Beta(3,2), i.e. proportional toε2(1− ε).

The Beta distribution
The Beta(p,q) distribution has pdf

Beta(x| p,q) =
Γ(p+q)
Γ(p)Γ(q)

x(p−1)(1−x)(q−1) .

The normalizing constant for this distribution is what is known
as the Beta function:

Beta(p,q) =
Γ(p)Γ(q)
Γ(p+q)

.

The Beta distribution is well defined for anyp > 0 andq > 0.
When p or q is less than 1, the pdf is unbounded at zero or 1,
respectively, though of course still integrable. The expectation
of a Beta(p,q) variable isp/(p+q).
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(2) Forecasting the election. The course website has three versions of the data set under-
lying Ray Fair’s presidential election forecasting regression.FairElectionData.txt
has the data as a text file, with variable names across the top and election years
down the left. ThefairData file has the same data arranged in an Rts object.
FairElectionData.xls has the data in a spreadsheet format. Fair’s web site
http://fairmodel.econ.yale.edu/vote2004/ shows his forecast as of
July 2004 of the right-hand-side variables for his estimated equation for this elec-
tion. For PARTY, PERSON, and DURATION the values are -1, 1, and 0. (These
variables are certain now.) For GROWTH, INFLATION, and GOODNEWS, they
were forecast by Fair in July as 2.7, 2.1, and 2.
(a) See if you can reproduce Fair’s own estimates of his equation. He uses only the

data from 1916 onward. His estimates are displayed in the November 2004 up-
date paperhttp://fairmodel.econ.yale.edu/RAYFAIR/PDF/2002DHTM.HTM .

(b) Use the full data set, back to 1880, and compare the results informally. (Look
at differences in estimated coefficients to see if they imply substantively impor-
tant differences in effects. Look at whether probability bands around estimates
overlap.)

(c) For both sets of estimates, treating Fair’s forecasts of November 2004 values
for his right-hand-side variables as exactly known values, assuming the SNLM
applies and using aσ−1 improper prior onσ , construct 95% probability inter-
vals for the Bush vote percentage. Take account of both parameter uncertainty
and disturbance uncertainty, including uncertainty aboutσ2. Also calculate the
probability, given the data, that Bush gets more than 50%.

(d) Redo this analysis using a proper prior. Use a prior in the conjugate class and
choose it so that it does not imply unreasonable beliefs about how much vari-
ation in the vote percentage can be explained by the regression equation. Also
keep it centered at a model that simply predicts 50%, regardless of the values of
the right-hand-side variables. By this I mean that at the prior mean values ofβ ,
the constant term is 50% and every other coefficient is zero.

Setting up the election forecast regression:The R dataset is in an R "ts" (for
"time series") object. You could recast it to an R data frame by writingfairData
<- as.data.frame(fairData) right at the start. Then you can specify your
regression using variable names, along the lines of

faireg <- lm(VOTES ∼PARTY+PERSON+ etc., data=fairData)
If you stick with the ts object version you have to set up the regression with columns
of the matrix, e.g.

faireg <- lm(fairData[,"VOTES"] ∼fairData[,2:8]) The ad-
vantage of sticking with the time series object is that then residuals are automatically
properly associated with dates on plots and listings of data. If you use the data.frame
object, you have to do some work yourself to get correct year labels on plots.

In R you’ll want to use thewindow() function to use the shorter data set.
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For Matlab, you can strip away the labeling in the text file, using an editor, and
then read in the data matrix as an ascii file, or try matlab’s commands that read
spreadsheet formats. You’ll need up to set up the regression algebra and labeling of
output yourself, though that’s not too hard.

For RATS, you can read in the xls data file, using the for=xls option in DATA.
It looks like RATS can’t automatically keep track of the gaps in the dates in these
series, so its best to treat them as undated.

CONJUGATE PRIORS FROM DUMMY OBSERVATIONS

Supposse we want to implement a prior that has a marginal distribution onν = 1/σ2 that
is Gamma(p,α) and conditional distribution forβ |σ2 that isN(µ ,σ2Ω). Begin by finding
W such thatW′W = Ω−1. There is always such aW, indeed many of them. One is the inverse
of the cholesky decomposition. In R, this would beW<-t(solve(chol(Omega))) , in
MatlabW=inv(chol(Omega)’) , in Ratscomp W = inv(decomp(Omega)) . Then
choose as a first set of dummy observations

Y∗ = Wµ
X∗ = W

This will take care of the conditional distribution ofβ |σ2.
To add a factor reflecting the proper prior onν , add2p additional dummy observations,

each withY =
√

α/p andX = 0. Note that this is different from what I said at the end
of the 9/30 lecture! Then I said you set bothY and X to zero in these additional dummy
observations. That will not implement a proper prior. Note that since the number of
dummy observations is discrete, this approach can only implement Gamma priors onν that
havep an integer multiple of12.

While this formally takes care of the problem, one more often works more directly with
the dummy observations. One can think of reasonableX∗t vector values (whereX∗t is a single
hypothetical row of theX matrix), and for each one what a reasonable correspondingY∗
value would be. Then one can ask oneself what would a reasonable “standard error” on this
correspondence betweenX∗t andY∗t be, and multiply bothY∗t andX∗t by the ratio of what
you think the equation residual standard error should be to your subjective standard error on
this dummy observation. Proceeding this way, one need not be limited to a specific number
of dummy observations. So long as there are at leastk+1 dummy observations, with a full
column rankX∗ matrix, the implied prior pdf will be proper.

One reasonable standardized proper prior might setΩ = (X′X/T)−1κ/k, wherek is the
number of columns inX and κ/(1+ κ) is the fracation of pre-sample uncertainty about
Y′Y one wants to attribute to uncertainty aboutβ , as opposed to uncertainty about the error
terms. This of course still leaves open the choice of the mean ofβ and the values ofp and
α. Choosingp = 1

2 or p = 1 is reasonable, as these priors do not imply a local peak in the
prior pdf onν anywhere except at zero.


