
Eco517 Fall 2004 C. Sims

LAWS OF LARGE NUMBERS, SUMMARIZING DISTRIBUTIONS, MODELS
AND THE LIKELIHOOD PRINCIPLE

1. THE SLLN

If {Xt} is i.i.d. for t = 1, . . . ,∞ andE[Xt ] is well defined, then

1
T

∞

∑
t=1

Xt = X̄T −−−→
T→∞

E[Xt ]

with probability one. Sometimes this is written asX̄T
a.s.−−→ E[Xt ], or as “X̄T converges almost

surely toE[Xt ]”. The i.i.d. distributions of theXt ’s imply a probability distribution over all
sequences of real numbers{xt} , t = 1, . . . ,∞. The SLLN says that the class of all sequences
of real numbers that don’t converge toE[Xt ] has zero probability. Proving this requires a
technical argument, so we won’t do it. This is a “strong” law of large numbers

2. THE WLLN

It is also true under the same assumptions that

P[|X̄T −E[Xt ]|> ε]−−−→
T→∞

0 for anyε > 0.

This is a “weak” law of large numbers. It is also sometimes stated as

X̄T
P−−−→

T→∞
E[Xt ]

or as “X̄T converges in probability toE[Xt ]”. Convergence in probability is implied by almost
sure convergence, which is why this latter result is called “weak”.

Why bother with the WLLN? Both it and the SLLN can be proved with less restrictive
assumptions than the i.i.d. assumption we have used here, and WLLN’s can be proved,
naturally, with less restrictive assumptions than those needed for a SLLN.

3. SHOULD THE SLLN MAKE YOU FEEL SAFE ABOUT SIMULATING?

• No matter whatE[Xt ] is, X̄T converges to it. Does this imply that it is safe and
sensible to choose a bigT, form X̄T , and act as if̄XT = E[Xt ]?

• Not necessarily. Suppose that we knew the distribution ofXt madeP[Xt = 0] = 1−ε,
P[Xt = ε−2] = ε. ThenE[Xt ] = 1/ε. This distribution has a well defined expectation,
so the SLLN applies.
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• But if ε is very small, we will see very manyXt = 0 observations before we see any
ε−2 observations. In fact the more zeros we see in a row, the more convinced we
should be thatε must be small and thereforeE[Xt ] big. Yet of course so long as we
see nothing but zeros,̄XT remains stuck at zero.

• Furthermore, all the standard checks for “convergence” would indicate increasing
confidence that theXT value is close to the truth as the number of sequential zeros
increases.

4. THE SAMPLE CDF

• EstimatingE[ f (X)] by taking the sample average of a sequence of i.i.d. draws from
the distribution ofX is a special case of the following.

• Define thesample cdfof the sample{x1, . . . ,xT} as

FXT(a) =
number oft ’s such thatxt ≤ a

T
.

The sample cdf implies a distribution that puts probability 1/T on each value ofxt ,
i = 1. . .T.

• If we are interested in some function of the distribution ofX, say

P[sin(X) > 0] =
∫

1{sin(x)>0}dP(x) ,

estimate it instead as ∫
1{sin(x)>0}dPT(x) ,

wherePT is the probability distribution implied by the sample cdf.
• This is equivalent to

1
T

T

∑
t=1

1{sin(xt)>0}

5. CONVERGENCE OF THE SAMPLE CDF, CONVERGENCE IN DISTRIBUTION

• At every point, a sample cdf formed from an i.i.d. sample converges a.s. toFX, i.e.
FXT(a) a.s.−−→ FX(a) at everya.

• Follows from SLLN, becauseFX(a) = E[1{x≤a}] and the sample cdf is the sample
average of1{x≤a}(Xt).

• This is a special case ofconvergence in distribution. A sequence of distribution
functions{FT} converges in distribution to the limitF∞ if and only if FT(a)→ F∞(a)
at everya at whichF is continuous.

• Equivalently, for every bounded, continuous functionf of X, E[ f (XT)]→ E[ f (X∞)],

whereXT is any random variable with the cdfFT . Sometimes writtenXT
D−→ X∞.

• So long as we stick to expectations of bounded continuous functions (and their mono-
tone limits), the strategy of substituting the sample cdf for the true one to obtain
estimates is justified (as much as it can be) by a SLLN.
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• Caution: There are interestingf ’s that don’t satisfy these conditions — e.g., the
number of local maxima in the pdf.

• XT
a.s.−−→ X∞ ⇒ XT

P−→ X∞ ⇒ XT
D−→ X∞.

• This is important to know, but treacherous. a.s. convergence makes an assertion
about entire random sequences, convergence in probability makes assertions about
the pairwise joint distributions of theXT ’s with X∞, and convergence in distribution

makes assertions about the univariate distribution functions of theX’s. XT
D−→ X∞

does not imply that the realized values ofXT andX∞ have to get close to each other.

6. QUANTILES

• Theα quantile of a distribution with cdfF is the value ofx such thatF(x) = α.
• Theα quantile of the sample cdf is easy to compute: sort the data in the sample, so

thatx(1) ≤ x(2) ≤ x(3) ≤ ·· · ≤ x(T). (This notation, in whichx( j) is the j ’th element in
the sorted sample, is standard.x( j) is sometimes called thej ’th order statistic of the
sample.) Then theα sample quantile isx( j), where( j −1)/T < αT < j/T, unless
x( j) = αT for somej, in which case it is any number betweenx( j) andx( j+1).

• WhenFX is strictly increasing, the corresponding quantile function satisfiesqX(α) =
F−1(α).

• The convergence results for the sample cdf therefore provide some assurance that
sample quantiles will converge for an i.i.d. sample, but this has to be qualified. If
FX is flat anywhere, i.e. if there are intervals of nonzero length with zero probability,
the quantiles corresponding to the endpoints of that interval are undefined, and the
corresponding sample quantiles will not converge.

• Even if there are only intervals with low, but still positive, pdf values, estimates of
quantiles falling in those intervals will converge very slowly.

7. SHORTEST PROBABILITY INTERVALS

• These may be the best general way to summarize the shape of a pdf or cdf.
• The minimum length set with probabilityα can be found from the pdf (if it exists)

by choosing a set of the formSα = {x| p(x)≥ θ} that satisfiesP[Sα ] = α. This set
will be a single interval if the pdf has a single local maximum, but otherwise may
consist of disconnected segments. A set like this provides an indication of what are
high-probability regions.

• Unlike quantiles shortest sets generalize directly to higher dimensions. They are also
easier to grasp intuitively than high-dimensional cdf’s.

• When densities exist, the value of the pdf at the boundaries of these sets are constant.
• For a pdf over two dimensions, minimum-area sets of given probability, if we collect

a number of them with different probability values, provide a topographical map of
the density function.
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8. COVARIANCE MATRICES

• For ann×1 random vectorX, Σ = E[(X−EX)(X−EX)′] is the covariance matrix.
Its diagonal elements are the variances of the individual random variables in theX
vector. Itsi, j ’th off-diagonal element,σi j = E[(Xi−EXi)(Xj −EXj)] = Cov(Xi ,Xj),
is thecovarianceof Xi with Xj .

•
∣∣Cov(Xi ,Xj)

∣∣≤√
Var(Xi)Var(Xj).

• We define thecorrelation of Xi with Xj as

ρ(Xi ,Xj) = Cov(Xi ,Xj)/
√

Var(Xi)Var(Xj) .

• If ρ(Xi ,Xj) =±1, thenXi is an exact linear function ofXj .
• Xi andXj pairwise independent ⇒ ρ(Xi ,Xj) = 0.
• The reverse impllication isnot true in general.
• It is natural to takeρ to be a measure of how strongly related two variables are. This

is reasonable when the joint distribution of the variables is a lot like a joint normal
distribution (which we have yet to define) — having a pdf with a single, round, peak
and dropping off rapidly for large values ofX. But it can be a poor measure in other
cases. [E.g., what is the correlation ofX with X2 when the pdf ofX is symmetric
around zero?]

9. ANALYZING COVARIANCE AND CORRELATION MATRICES

• Obviously the diagonal elements ofΣ, being variances of individual random vari-
ables, are a measure of the “spread” of their distributions, as in the univariate case.

• The off-diagonal elements of the covariance matrix are a measure of the strength of
pairwise relations among the variables.

• But there can be strong multivariate relations among variables that don’t show up in
pairwise correlations.

10. CHARACTERISTICS OF COVARIANCE MATRICES

• A matrix Σ is positive semi-definite(p.s.d.) if and only if for every conformable
vectorc, c′Σc≥ 0.

• The covariance matrixΣ of a random vectorX must be p.s.d. because (as you should
be able to verify for yourself)c′Σc = Var(c′X), and a variance cannot be negative.

• Note also thatΣ is symmetric, meaningΣ = Σ′. This follows from the fact that
Cov(Xi ,Xj) = Cov(Xj ,Xi).

• Any symmetric, p.s.d. matrix can be a covariance matrix.

11. EIGENVALUE DECOMPOSITION

• Any symmetric, p.s.d.,n×n matrix Σ can be decomposed as

Σ =
n

∑
i=1

viλiv
′
i = VΛV ′ ,
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whereλi , i = 1, . . . ,n are non-negative real numbers,vi are n× 1 vectors,V is a
n×n matrix with thevi as columns, andΛ is a diagonal matrix with theλi down the
diagonal.

• V satisfiesV ′V = I , which is to say thatV is anorthonormal matrix. The columns of
V are the righteigenvectorsof Σ (becauseΣV = VΛ and theλi are theeigenvalues.

• Matlab, R or Rats will findV andΛ for you with a single command.

12. FROM EIGENVALUE DECOMPOSITION OFΣ TO COMPONENTS OFX

• TheX vector can be respresented as

X =
n

∑
i=1

λizivi ,

wherezi , i = 1, . . . ,n are i.i.d. with mean zero and variance 1.
• Thezi , or sometimes the vector random variablesλizivi , are known as theprincipal

componentsof X. Thevi ’s associated with largeλi ’s correspond to directions inRn

in which theX vector varies a lot, while those with smallλi ’s correspond to directions
with very little variation.

• We could calculate principal components of the correlation matrix also. Even though
the correlation matrix is just a rescaling of theΣ matrix, its principal components
will be different. That is, the correlation matrix isD− 1

2 ΣD− 1
2 , whereD is a diagonal

matrix with
√

Var(Xi) on the diagonal — this is what we mean by saying the corre-
lation matrix is a rescaling of the covariance matrix. But if we take the eigenvalue
decompositionR= WMW′ of the correlation matrixR, we will find V 6= D

1
2W and

there is no simple correspondence between the eigenvalues ofRandΣ.
• This reflects a general fact about principal component decompositions — they are

not scale invariant. Change the units of measurement of some of the components of
X and you will change the principle components decomposition.

• Sensitivity to scaling is not the only pitfall to look out for in using the results of
a principal components analysis. If a large number of closely related variables are
added to theX vector, the first principal component will eventually reflect mainly the
common component of those variables.

• This might be desired behavior. But often we are tempted to use p.c. analysis when
we have several imperfect measures of two or more concepts and we are looking for
relations between the concepts. For example we have three measures of education
and 3 of income, each of them imperfect. Principal components on this vector will
give a different answer with the full 6-dimensionalX than what we get if we leave
out any element of theX vector.

• Nonetheless principal components decompositions ofΣ and/orR are useful descrip-
tive devicesin many cases.

• Not in all cases. As with any function of a distribution we might use to summarize its
shape, whether the summary is useful or not depends on the class of distributions we
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have in mind and what our uncertainties about the distribution are. As with variances,
covariance matrices may not exist. Even when they do exist, they may be misleading
as measures of spread or of dependence between variables.

13. 2-DIMENSIONAL GEOMETRIC INTERPRETATION

• If the joint pdf of X,Y has same-shaped elliptical level curves centered at zero, i.e.
if the pdf can be written asp(ax2 + bxy+ y2) with b2 < 4ac, or equivalently as
p([x,y]M[x,y]′) with M positive definite (meaning p.s.d. but with all eigenvalues
strictly positive), then ifX,Y have a finite covariance matrix, it is proportional to
M−1, the eigenvectors of the covariance matrix (and ofM) are the principal axes of
the ellipses, and the lengths of the principal axes are proportional to the square roots
of the eigenvalues of the covariance matrix.


