
Eco517 Fall 2005 C. Sims

FINAL EXAM

This is a three hour exam. Answer all questions. The number of points per question is
shown next to the question number. The total number of points is 180, so you should allocate
about one minute per point. Do not spend disproportionate time on any one question unless
you have already answered all the others. It may be possible to finish the exam in less than
three hours if you are well prepared.

(1) (60) An economist is interested in the price elasticity of demand for concrete.
She has data on log price p and log quantity sold per capita q for a number of
counties. She does not have enough data to model supply explicitly, but she
has data on the distance z from each county to the nearest cement manufac-
turing plant. Distance to such a plant is an important determinant of the cost
of delivering concrete. She estimates by least squares the two regressions

pj = α0 + α1zj + ε j

qj = β0 + β1zj + νj .

She then puts forward γ̂ = α̂1/β̂1, the ratio of the two OLS estimates of z
coefficients, as her estimate of the price elasticity of demand for concrete.
(a) What assumptions would make her procedure deliver a consistent esti-

mate? First, we have to make allowance for the fact that what is pro-
posed is reasonable only as an estimate of the inverse of what is usually
called the price-elasticity of demand. I hope nobody was tripped up by
that. And since I didn’t notice this problem in writing the question, you
didn’t lose credit for not noticing it either. The answer proceeds as if the
inverse of the price elasticity of demand is actually what was wanted.
If we assume that the demand curve has the form

pj = δ + γqj + ηj ,

then the usual instrumental variables estimator for γ is exactly what is pro-
posed. This would be obvious if there were no constant terms, since then the in-
strumental variables formula (Z′X)−1Z′Y and the OLS formulas (Z′Z)−1Z′X
and (Z′Z)−1Z′Y are scalar, so that the Z′Z terms simply cancel. But here the
constant term is part of the Z matrix, so the formulas are not scalar. There are
two approaches possible here. The more elegant one is to note that if we subtract
its sample mean from z, to arrive at z̃, using z̃ along with the constant vector as
instrument gives exactly the same instrumental variables estimates as using the
original z, along with the constant vector. This is a special case of the general
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result that if we replace Z by Z∗ = ZA, where A is any square non-singular
matrix, (Z′X)−1Z′Y = (Z∗′X)−1Z∗′Y. With z̃ as instrument, so Z = [1, z̃],
both Z′Z and Z′[1, x] are diagonal and it becomes clear that the ratio of the
two ols (i.e. reduced form) coefficients is the IV estimator. It is also feasible to
write out the formulas for the two OLS estimators and for the IV estimator with
Z = [1, z] and verify directly that the ratio of ols estimates is the IV estimate of
γ.
So the assumptions required are the usual assumptions needed to justify consis-
tency of IV: stationarity, ergodicity, E[z2

j ] > E[z]2 (to guarantee invertibility of
the probability limit of (1/N)Z′Z), E[ηj] = 0, and E[zjηj] = 0.

(b) How should she construct a non-Bayesian standard error for her esti-
mate? Is this an asymptotic approximation or a small-sample exact re-
sult?
The standard non-Bayesian asymptotic theory for IV uses ergodicity and the
assumed non-singularity of E

[
Z′j[1, xj]

]
to argue that (1/N)Z′X converges

to a non-singular probability limit. It makes an assumption to guarantee that
(1/

√
N)Z′η is asymptotically N(0, σ2

η ΣZ). An assumption we used for this
kind of argument was that Z′jηj forms a martingale difference sequence. Under
these conditions the asymptotic variance for the IV estimate of γ is the lower
right corner of s2(Z′X)−1Z′Z(X′Z)−1, where s2 = ∑ η̂2

j /N and η̂j = pj −
δ̂ − γ̂qj. An asymptotically justified 95% confidence interval would then be
obtained as γ̂± 1.96σγ, where σγ is the square root of the asymptotic variance.
This is an asymptotically justified interval, with no finite sample interpretation
except as an approximation.

(c) The likelihood for this model as a function of the α’s, β’s, and distur-
bance variances, with Gaussian errors, is integrable, so it can be treated
as a flat-prior posterior. Does this guarantee that the implied posterior
for γ = α1/β1 is an integrable density?
Yes. If a vector of random variables has a proper density (i.e. one that in-
tegrates to one), then any function of it that is bounded and continuous on
a set of Lebesgue measure one also has a proper density. More directly, even
though α1/β1 goes to infinity when β goes to zero, for any real number B the
set {α, β | |α/β| < B} is a well-defined subset of R2 with probability less than
one, and the probability goes to one as B → ∞. Thus the probability of the
whole space of γ values is finite.

(d) How should she construct a posterior 95% probability region for γ, with-
out relying on asymptotic approximations? What assumptions would
this involve?
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We assume [
ε j
νj

]
∼ N(0, Σ)

for each j and that the ε j are i.i.d. across j. Then by stacking p and q on top of
each other to form a longer vector Y and letting

Z =
[

z 0
0 z

]
,

We can treat the two equations given in the question statement as one GLS

equation Y = Z
[

α
β

]
+ ζ. The covariance matrix of disturbances will be Σ⊗ I

and will thus have three free parameters. Conditional on the covariance matrix
of disturbances, α, β will be jointly normal, as usual with GLS. To form a pos-
terior probability interval over γ = α/β, one would need to integrate the three
free parameters out of the normalized (to integrate to one) likelihood. Or, more
simply, use a Gibbs sampling scheme to draw from the posterior for α, β, Σ and
then construct the Monte Carlo sample distribution of γ = α/β.

(e) Suppose she uses Monte Carlo methods to simulate draws from the pos-
terior pdf for γ. She will find that the mean of the Monte Carlo simula-
tions does not converge to any limit, no matter how big her Monte Carlo
sample. Why? Would the median of the Monte Carlo draws be better
behaved? Why?
The posterior pdf for γ is for the ratio of two random variables, with the denom-
inator having positive density at zero. Such ratios always have pdf’s with tails
that decline as γ−2. That flat-prior posteriors for IV estimators have no mo-
ments was pointed out in class. So the reason that sample means of the Monte
Carlo draws don’t converge is that the expected value they try to estimate does
not exist. But since the posterior is a proper pdf, its median is well defined and
will be estimated well by the median of the sample when the number of MC
draws is large enough.
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(2) (60) Suppose we are estimating a wage equation on a data set that includes
individuals from each US state. The equation is

wij = α + Xijβ + Sijγj + εij ,

where i indexes individuals and j indexes states. The X variables measure
socio-economic background characteristics of individuals and economic en-
vironment in the state. The S variable is years of schooling beyond the 8th
grade, and the j subscript on γj reflects the possibility that school systems
differ in effectiveness across states. We assume that conditional on the ma-
trix X of Xij variables and S, the vector of schooling levels, ε, the vector of all
the εij’s, is distributed as N(0, σ2 I) and the γj’s, the 50 state-specific schooling
effects, are i.i.d. across j with each distributed as N(γ̄, ω2).
(a) Show that if we are interested in α, β and γ̄, we can obtain unbiased (in

the pre-sample sense) estimators of them by forming OLS estimators of
them from this equation:

wij = α + Xijβ + Sijγ̄ + νij ,

The error term in the proposed estimating equation above is νij = Sijηj + εij,
where ηj = γj − γ̄. Assuming the matrix of right-hand-side variables has
a non-singular sample moment matrix, unbiasedness of OLS is guaranteed if
the conditional expectation of the residuals, given the right-hand-side variable
matrix, is zero, which it is here according to the stated assumptions.

(b) Explain how to calculate an asymptotically justified estimate of the co-
variance matrix of these OLS estimates (pre-sample, non-Bayesian dis-
tribution theory). Note that there is not just a single “N” or “T” sample
size here. Instead there are M states and nj individuals in each state j.
What has to “go to infinity” to justify your proposed covariance matrix?
We would like to apply the standard procedure of forming the covariance ma-
trix of a GLS estimate, (X′X)−1X′ΩX(X′X)−1, with a consistent estimate Ω̂
replacing Ω. Here, if we order observations so that observations for a given j
are kept together, Ω will be block diagonal. νij is uncorrelated across groups
because both εij and ηj are. Within a group, the covariance matrix is Ωj =
ω2S·jS′·j + σ2 I, where S·j is the column of Sij values for the j′th state. If the
number of observations within each state is “large”, then we could estimate the
original equation with separate γj’s on each state’s data in isolation. This would
not be efficient, since it uses no information on the distribution of the γj’s and
does not use the restriction that the α and β coefficients are not supposed to vary
across states. Nonetheless it would give consistent (assuming observations per
state goes to infinity) estimates of the γj’s, and could be used to directly es-
timate the variance of the γj’s as the sample variance of these OLS estimates.
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There would be a separate estimate of σ2 from each of these regressions, and
these could be averaged to form a good estimate of σ2 (though actually any one
of them is consistent under the “many i’s per j” assumption).
If there were in fact many i’s per j, it’s not clear why we would be bothering
with OLS on the whole sample. Estimating α, β and γ̄ by averaging the esti-
mates from individual state regressions would probably provide better estimates
than OLS. If we think of the number of states as large, while the number of
observations per state is possibly not large, then we have a different problem.
The straightforward approach to the many-states, few i per state, situation is to
use the OLS residual vectors for the states, ν̂·j as if they were the actual ν’s and
form the a likelihood as

−1
2 ∑

j
log

∣∣Ωj
∣∣− 1

2 ∑
j

ν̂′·jΩ
−1
j ν̂·j .

If the number of states is reasonably taken as “large”, then maximizing this
approximate likelihood with respect to the two free parameters ω2 and σ2 should
be fairly straightforward and lead to a consistent estimate of Ω.

(c) With a flat prior on α, β, γ̄, ω2 and σ2, it is possible to form a sample
from the posterior on all these parameters plus all the γj’s via a Gibbs
sampling scheme. Explain how. [Hint: One stage of the Gibbs sampler
will involve GLS. Note that conditional on α, β, and γ̄, νij is known ex-
actly, and that νij = Sij(γj − γ̄) + εij, a standard regression equation,
while the model for the distribution of the γj’s can be expressed with a
set of dummy observations of the form

0 = 1 · (γj − γ̄) + ξ j ,

where ξ j is i.i.d. N(0, ω2).
There is more than one way to set this up. Here is a simple one that actually
avoids GLS. We order the parameters as (α, β, γ̄, η, σ2, ω2). With all the other
parameters fixed, the likelihood is Gaussian in α, β, γ̄. In fact, since we are
assuming ηj is known, we can subtract S·jηj from the dependent variable in
each state, so that the regression to be estimated has the form of a SNLM. With
a draw from the distribution of these three parameters in hand, we can form νij’s.
Within each state, we can use the regression equation νij = Sijηj + εij, which
is a SNLM. Because we also have a directly asserted distribution N(0, ω2) for
each ηj, we need to append to each of these little within-state regressions a single
dummy observation of the form shown in the hint. The dummy observation has
to be scaled by σ/ω to get appropriate weight. From each of these within-state
models we make a draw from the posterior on ηj. With the ηj’s in hand, we can
make a draw from the standard inverse-gamma posterior for their variance, ω2,
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and since with α, β, γ̄, η all fixed we can calculate εij exactly, we can make a
draw from its inverse-gamma posterior also. Then we are ready to start the next
set of Gibbs sampling draws by going back to α, β, γ̄ again.
A somewhat more efficient scheme proceeds in exactly the same way, but in
the first step uses GLS to estimate α, β, γ̄ instead of subtracting S·jηj from the
left-hand side and applying OLS. This would be drawing from the conditional
distribution of the three parameters given data and ω2, σ2 rather than condi-
tioning also on the η’s. We would then be drawing the η’s only as an auxiliary
step in generating a draw from the conditional distribution of σ2, ω2 given the
data and α, β, γ̄. The efficiency improvement would come from eliminating the
dependence of the α, β, γ̄ draws on the η draws.
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(3) (60) Suppose we have data from two job retraining centers. Trainees have
been allocated randomly to the two centers. For each center a one-year follow-
up asks whether trainees have a full time job. For center 1, 24 of 36 trainees
have full time jobs. For center 2, 20 of 25 have full time jobs. We suppose
that each center j = 1, 2 has a probability of success, by this measure, of pj,
which applies to all trainees in that center. The standard unbiased estimator
of pj is sj/nj, where sj is the number of successes (trainees who have jobs
after one year) and nj is the total number of trainees surveyed. A pretty good
asymptotic approximation is that

sj/nj ∼ N(pj, pj(1− pj)/nj) . (∗)

(a) A further asymptotic approximation would replace the variance in the
normal approximation with a consistent estimate of it, so that here we
would treat sj/nj as N(pj, sj · (nj − sj)/n3

j ). Using this approximation,
form a 5% level test of the null hypothesis that the two centers have equal
effectiveness (i.e. p1 = p2) based on the statistic s1/n1 − s2/n2. The .95
quantile of the cdf of a standard normal is 1.64 and the .975 quantile is
1.96. For this part of the question, but not the next two, you are expected
to come up with numbers, or at least to show explicit formulas for a
numerical calculation based on the data given in the problem.
We are taking the difference of two independent approximately normal random
variables, with variances 24 ∗ 12/363 = .006173 and 20 ∗ 5/253 = .006400,
respectively. The variance of their difference is the sum of the variances, and the
standard error of the difference is thus

√
.012573 = .1121. Since the difference

.8− .6667 = .1333, just barely over one standard error, it is clear that the null
hypothesis of no difference would not be rejected by this approximate test.

(b) For this and the next part of this question, assume a uniform prior on
(0, 1) for each pj, independent across j. With this prior, show how to
form the posterior probability that p2 > p1, using the normal approxi-
mation (∗) (i.e. taking account of the dependence of variance on pj). You
should (here and in the next part) use a sketch of the posterior in p1, p2
space to illustrate your answer and explain how to use the computer to
get a numerical answer.
We would form the approximate likelihood as

φ((p1 − 2
3)/σ1(p1))

σ1(p1)
· φ((p2 − .8)/σ2(p2))

σ2(p2)
where

σ2
i =

pi · (1− pi)
ni
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and φ is the standard normal density function. We would then integrate over
the part of the unit square where p2 > p1, normalizing by the integral over the
whole unit square to get the probability.

(c) Show how to form the posterior probability that p2 > p1 using the actual
pdf of the data, without any asymptotic approximations. [Hint: Recall
that the probability of s successes in n independent trials, with probabil-
ity of success p at each trial, is ps(1− p)n−s.]
Same as the last part, except the two likelihoods to multiply together are now
p24

1 · (1− p1)12 and p20
2 · (1− p2)5. A “sketch” of the joint pdf is below, this one

made with the computer. Though this figure was made with the normal approx-
imation, the true likelihood contours are almost the same. You were expected
to have the general idea of where the peak was and what part of the picture
should be integrated over. The actual posterior probability, in case you’re in-
terested, is about .87, and this is almost the same whether the exact or normal
approximation likelihood is used. Note that the marginal significance level of
the asymptotic classical test statistic in part (3a) is about .12, so the three ways
of doing inference give very similar messages in this instance.
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