
Eco517, Part I Fall 2002 C. Sims

LECTURE 10: ESTIMATION, TESTING, CONFIDENCE INTERVALS

1. ESTIMATION : AS A BAYESIAN DECISION PROBLEM

• The “decision” is choice of a vector̂β that should be close to the unknown vectorβ .
• For example, if our loss function isL(β , β̂ ) = (β − β̂ )′A(β − β̂ ) for some positive

definiteA, then the optimal decision, as a function of observed dataX, is β̂ = β̄ def=
E[β | X].

2. PROOF:

E[(β − β̂ )′A(β − β̂ )]

= E[(β − β̄ )′A(β − β̄ )+2(β − β̄ )′A(β̄ − β̂ )+(β̄ − β̂ )′A(β̄ − β̂ ) | X]

= tr
(
AVar(β | X)

)
+(β̄ − β̂ )′A(β̄ − β̂ ) .

This latter expression consists of a first piece that does not depend onβ̂ , and a second ex-
pression that, becauseA is p.d., is minimized at̄β = β̂ , where it is zero. The middle term in
the expansion drops out becauseE[β − β̄ | X] = 0 by construction.

There is a corresponding result forL(β , β̂ ) = ∑
∣∣∣β̂i−βi

∣∣∣. With this loss function, it is

optimal to setβ̂ so that(∀i)P[βi > β̂i | X] = .5, i.e. so thatβ̂ is the vector of medians of the
β | X distribution. (This assumes theβ | X distribution has a pdf.)

3. UNBIASEDNESS

• You might think that this meansE[β |X] = β̂ , but that would be a Bayesian analogue
of unbiasedness. Unbiasedness is a non-Bayesian attribute for an estimator, meaning
that it is a property of the distribution of the estimator as the observed dataX varies
randomly.β̂ (X) is anunbiased estimator forβ iff (∀β )E[β̂ | β ] = β .

• While this property is intuitively appealing, it is hard to give any formal argument
that unbiasedness is a good property. In fact, we have the following result:

• No finite-variance Bayesian posterior mean is unbiased, unless it is completely error
free.

• Proof, for the 1-dimensional case: Suppose insteadE[β̂ | β ] = β andE[β | X] = β̂ .
Then

E[β 2] = E
[
Var(β | X)

]
+E[β̂ 2]⇒ E[β 2] > E[β̂ 2]

E[β̂ 2] = E
[
Var(β̂ | β )

]
+E[β 2]⇒ E[β̂ 2] > E[β 2]→←
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Since we know that under some regularity conditions every admissible estimator will be
Bayesian for some prior, this suggests thatusuallyunbiased estimators are inadmissible un-
der a quadratic loss function.

4. THE STEIN RESULT

• Having seen the result that unbiased estimates can’t be admissible under mean-
squared-error loss, it is perhaps surprising that the OLS estimator ofβ in the SNLM
Y = Xβ + ε is admissible — ifX has no more than two columns. This reminds us
that the regularity conditions that make Bayesian and admissible estimators equiva-
lent classes are indeed restrictive. The OLS estimator is not a Bayes estimator under
any proper prior, but it is admissible. (It is the limit of a sequence of Bayesian esti-
mators.)

• Whenβ is of dimension higher than two, OLS is not admissible. This was shown by
Stein, who constructed an estimator (itself inadmissible) that dominates OLS under
a mean squared error loss function.

5. CONSISTENCY

• β̂T
P−−−→

t→∞
β def⇔ (∀ε > 0)P

[∥∥∥β̂T −β
∥∥∥ > ε

]
−−−→
T→∞

0 .

• This isconvergence in probability.
• Note thatβ , like theβ̂T ’s, in this definition can be a random variable.
• Convergence in probability makes a statement about the sequence of joint distribu-

tions of(β̂T ,β ).

• This contrasts withβ̂T
D−−−→

T→∞
β , which makes a statement about the sequence of

marginal distributions of thêβT ’s.

• β̂T
P−→ β ⇒ β̂T

D−→ β .
• A commonly occurring special case is that whereβ has a degenerate distribution

making it a constant.

• β̂T is aconsistentsequence of estimators forβ if β̂T
P−→ β .
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6. TESTING

Θ : parameter space

H0⊂Θ : null hypothesis

HA⊂Θ : alternative hypothesis

X : observed data, taking values inΓ
S: Γ→ Rn : test statistic

B⊂ Rn : rejection region

α = P[S∈ B | H0] : significance level, or size

γ = P[S∈ B | HA] : power

7. CONNECTION TO A DECISION PROBLEM

• The definitions displayed here are only appropriate, strictly speaking, whenHA and
H0 are each a single point.

• If in additionΘ = {H0,HA} and the only data we observe isZ = 1S(X)∈B, then knowl-
edge ofα andγ allows us to fully specify the likelihood. ForZ = 1 the likelihood
is just α at H0 andγ at HA, so with, e.g., equal prior probabilities onH0 andHA,
the probabilities ofH0 andHA whenZ = 1 areα/(α + γ) and γ/(α + γ). When
Z = 0 (the null is not rejected) the probabilities are instead(1−α)/(2−α− γ) and
(1− γ)/(2−α− γ).

8. COMPOUND HYPOTHESES

• When an hypothesis is more than a single point in the parameter space, it is called
a compoundhypothesis. IfH0 is compound, the probability of rejection may vary
over the parameter space. It is standard terminology in this case to say that the size
or significance level of the test is

max
θ∈H0

P[S∈ B | θ ] .

• It is not standard to make the corresponding change modification of the definition of
power, which would make it

min
θ∈HA

P[S∈ B | θ ] .

• If we made this modification to the notion of power, most standard cases would show
power equal to significance level. Since in the point null, point alternative case a test
with power equal to significance level is useless, it is clear that we don’t want to
define power as this minimum, since it would make useful tests look useless.
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• However, it is not so clear why size should be maximized overH0, while power is
treated as a function ofθ ∈HA, instead of defining power as the minimum overHA of
the rejection probability, while significance level were treated as function ofθ ∈ H0.

• A test isunbiasediff

θ0 ∈ H0 , θA ∈ HA ⇒ P[S∈ B | θ0]≤ P[S∈ B | θ1] .

• Unbiasedness of tests has nothing to do with unbiasedness of estimators. For point
null, point alternative cases a biased test is ridiculous — it would be better to replace
the rejection region with its complement, which would produce an unbiased test. In
more complicated situations it is sometimes reasonable to use an easily computed or
interpreted test that is biased. In such cases the portion of the parameter space over
which the rejection probabilities have the wrong relative magnitudes is judged to be
small.

• Example of a biased test:

H0 : S∼ N(1,1)

HA : S∼ N(γ,γ2) ,γ ∈ (0,∞)
B : |S−1|> 1.96.

This is a test with size .05 under the point null. However, only forγ > 1 is the
probability of rejection greater underHA. The probability of rejection, conditional
on γ, is

P[S−1 > 1.96 | γ ]+P[S−1 <−1.96 | γ]

= 1−Φ
(

2.96
γ

+1

)
+Φ

(−.96
γ

−1

)
,

which is everywhere increasing inγ, and thussmallerfor γ < 1 than forγ = 1.


