
Econ. 517, Econometric Theory I Fall 2001 Chris Sims

Exercise∗

(1) Prove that for a random vector X with the standard N(0, Σ) pdf, Σ is in fact
the covariance matrix of X. [Suggestion: First prove it in the univariate case,
then in the case of independent X, then in the general case, by writing a
general X as W ′Z where Z is independent.]

For the univariate case, we can apply integration by parts:
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For a vector X of n independent N(0, σ2
i ) variables, with i = 1, . . . , n, the pdf is

a product of univariate normal pdfs. When we integrate x2
i over this joint pdf, it

is easy to see that the univariate argument above tells us that σ2
i is the variance.

The off-diagonal elements of Σ here are 0, and the covariance of Xi with Xj
for i 6= j is obtained by integrating xixj with respect to the joint pdf. It is easy
to see that this breaks into a product of separate integrals that are 1 when we
integrate with respect to k 6= j, i and 0 when we integrate with respect to i or
j, because xi is anti-symmetric about zero as a function of xi, while the normal
pdf itself is itself symmetric about zero. We know from our discussion of matrix
transformations that any N(0, Σ) variable can be written as W ′Z, where W ′W =
Σ and Z is multivariate normal with covariance matrix I. But we also know that if
Var(Y) = Ω and C is a constant matrix, Var(CY) = CΩC′. So we can conclude
that Var(X) = Var(W ′Z) = W ′W = Σ.

(2) Construct an example of a three-dimensional random vector X with the prop-
erty that each of the three possible two-element subvectors (Xi, Xj) of X has
a marginal distribution that is N(0, I), but the three X’s considered jointly
are not independent. [Though this is in some sense simple, it may be hard
to see how to approach it. Don’t waste a lot of time on it if it seems impos-
sible.] Here’s one way to do this: Take (X, Y, Z) ∼ N(0, I), and then form the
conditional distribution of these three variables given XYZ > 0. This conditional
distribution has joint pdf 2φ(x)φ(y)φ(z) on those regions in R3 where xyz > 0.
This is because the pdf is proportional to the original pdf in those regions, and
those regions,

{x, y, z | x > 0, y > 0, z > 0} ∪ {x, y, z | x > 0, y < 0, z < 0}
∪ {x, y, z | x < 0, y > 0, z < 0} ∪ {x, y, z | x < 0, y < 0, z > 0} ,
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FIGURE 1. The four components of a level surface of the joint pdf of X, Y, Z

are four of the eight similar orthants that make up R3. The pdf is zero in the
remainder of the space. But then if we integrate the pdf with respect to z for a
fixed x, y, say with xy > 0, we will be forming∫ ∞

0
2φ(x)φ(y)φ(z) dz = φ(x)φ(y) .

There is a similar expression for the case where xy < 0, though in that case
we integrate over the region where z < 0. Still, in either case, the marginal
pdf emerges as simply φ(x)φ(y), which is the 2-dimensional N(0, I) pdf. Thus
the pair X, Y is independent and jointly normal considered by itself, but does not
form a joint normal vector with Z. That the 3-d joint distribution is not independent
follows from the fact that the marginal pdf’s are all everywhere positive, so their
product can never be zero, yet the joint pdf is in fact zero over half the space.
Figure 1 shows the four nontrivial pieces of one level surface of the pdf. Note that
it is just four chunks of a sphere.

(3) Using a Taylor approximation of the log of the pdf about its maximum, con-
struct normal approximations to the Γ(1.5), Γ(2), and Γ(4) pdf’s. In each case,
plot both the original pdf and the normal approximation to it. Do this also
for Γ(.5), though in this case, since the pdf does not have a peak, you should
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make the Taylor expansion about the mean (which is .5) and, because this is
not the peak, you will have a first-order as well as a second-order term.

(No answer to this one, since apparently nearly everyone could see how to do
it.)

(4) Here are two Σ matrices:
1.1000 0.1000 0.1000 1.0000
0.1000 1.1000 1.0000 0.1000
0.1000 1.0000 1.1000 0.1000
1.0000 0.1000 0.1000 1.1000




1.0000 0.5000 0.3333 0.2500
0.5000 0.2750 0.1667 0.1250
0.3333 0.1667 0.1222 0.0833
0.2500 0.1250 0.0833 0.0688

 .

For each, compute both an eigenvalue decomposition and a Choleski decom-
position. Do both methods “work” to suggest structure for the matrix? Do
they suggest similar definitions of the important “Z” components explain-
ing variation in the X’s with these covariance matrices? Matlab commands
relevant here are chol and eig .

For the first matrix, the Choleski factor is

W =


1.0488 0.0953 0.0953 0.9535

0 1.0445 0.9487 0.0087
0 0 0.4368 0.0019
0 0 0 0.4368


With X = W ′Z, we can see that the first two elements of the Z vector have large
weight (large entries in the first two rows of W) for every Xi. The variance of Xi
is the sum of squared elements in the i’th row, and the variance of the part made
up of Z1 and Z2 alone is the sum of squares of the first two elements in the i’th
row. So a convenient summary of how much of each Xi we explain with the first
two Z’s is found by

W2=(W.*W)’;
sum(W2(1:2,:))./sum(W2);

which produces the vector [1 1 .8265 .8265]. So the first two X’s are just lin-
ear combinations of the first two Z’s, while the last two have other variation as
well. They are mostly accounted for by the first two Z’s, but maybe the principal
components W will do better.

The principal components W is (I’m skipping details, since most people figured
out how to get Matlab to do these calculations)

W =


−0.0177 0.2229 −0.2229 0.0177
−0.2229 −0.0177 0.0177 0.2229
0.6892 −0.6892 −0.6892 0.6892
0.7583 0.7583 0.7583 0.7583

 .
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This too has only two big rows, but in this case they are the last two. The same
sort of calculation as above, but this time summing over the last two rows of W2
in the numerator instead of the first two, produces the vector [.9545 .9545 .9545
.9545]. This seems to do a neater job of extracting common components here
than the Choleski factor.

Repeating these calculations with the other matrix, in which a single row turns
out to dominate, one obtains the vectors [1 .9091 .9091 .9084] (Choleski) and
[.9960 .9381 .9198 .9128] (principal components). Once again, principal com-
ponents seems to have found a single “common factor” that explains more of
the other variables’ variation, while sacrificing only slightly on explanation of the
“first” variable. An interesting question is whether the two methods are finding
nearly the same “big Z” in this latter matrix. Since these are two normal random
variables, there is a regression relation connecting them, Zchol = βZpc + ε, and
we know how to calculate β and the variance of ε, because we can calculate the
variances and covariance of the two Z vectors. We can calculate them because
both Z vectors are linear functions of X, via the relation

(
W−1)′X = Z. So if the

Choleski “big row” in W is the first, we take c = W ·1, the first column of W−1.
When we similarly pull out the column of the principal components W−1 that cor-
responds to the big column of W and label it b. The variances of the two Z’s are
then c′Σc and b′Σb (both of which are by construction 1), and the covariance is
c′Σb. We get in this case b =[.6983 .3554 .2346 .1753] and c =[1 0 0 0]. This
gives us the regression equation

Zchol = .9980Zpc + ε .

Since both Z’s have variance 1, it is clear that the two common components are
nearly the same. In fact the proportion of the variance of the Choleski Z that is
accounted for by the principal components Z is .99802 = .9960. This measure of
“explained” variance as a fraction of total variance of the left-hand side variable
is what is known as the R2 of the regression.


