
Econ. 517, Econometrics I, part I Fall 2001 Chris Sims

Exercise on Probability and Expectation∗

1. For each of the classes of sets Gi below, Show that Gi is, or is not, itself a σ-field.
If it is not, display the σ-field generated by Gi. In each case, the underlying
complete space S = {1, 2, 3, 4, 5}.

G1 = {{1, 2} , {3, 4} , {5}} (1)
G2 = {{1, 2} , {2, 3} , {3, 4} , {4, 5}} (2)

G3 = {{} , {1, 3, 5} , {2, 4} , {1, 2, 3, 4, 5}} (3)

2. Suppose we define the following function on G2:

P[{1, 2}] = .1 P[{2, 3}] = .2 P[{3, 4}] = .4 P[{4, 5}] = .5 . (4)

(a) Is there a probability defined on the σ-field generated by G2 that matches
this function on these sets? Why or why not? If so, are the probabilities of
the 5 individual points in S uniquely determined? If so, what are they?

(b) Answer the question again, this time with

P[{1, 2}] =
1
4

P[{2, 3}] =
5
12

P[{3, 4}] =
1
2

P[{4, 5}] =
1
2

. (5)

3. (a) Suppose that the random variable X on S is defined by

X(1) = 5 X(2) = 4 X(3) = 3 X(4) = 2 X(5) = 1 . (6)

For each of the Gi of problem 1, using a probability P on S that you found
in problem 2 to be internally consistent, find E[X | Fi], where Fi is the
σ-field generated by Gi. (This conditional expectation is a random vari-
able on S , of course, so it is a list of 5 numbers, the value of the random
variable at each point in S .)
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(b) Suppose that the random variable Z on S is defined by

Z(1) = 2 Z(2) = 2 Z(3) = 3 Z(4) = 3 Z(5) = 5 . (7)

Show that E[X | Z] coincides with one of the E[X | Fi] random variables
that you computed in part 3a.

4. Consider the functions F : Rk → [0, 1] defined by

(a)

F(x, y) =





0 x < 0 or y < 0
.1 + .2x · y x > 0, y > 0, x · y < 4.5
1 x · y ≥ 4.5

(b)

F(x, y) =
4

π2 arctan(ex) arctan(ey)

(c)

F(x, y, z) =

{
min{x, 1} ·min{y, 1} ·min{z, 1} if x > 0, y > 0, and z > 0
0 if x < 0 or y < 0 or z < 0

Note that this means that

F(x, y, z) = xyz if x ∈ (0, 1) and y ∈ (0, 1) and z ∈ (0, 1)

In each case, determine whether F is a distribution function. If so, in cases 4a
and 4b find the probability of the rectangle with corners (-1,-1) and (3,3), and
in case 4c find the probability of a sphere of radius .5 centered at (.5,.5,.5).
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