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Constructing yield profiles from puts and calls∗

1. Mistake

The brief treatment of this in class, which class discussion already showed to be un-
clear, was actually completely off track. The type of simple combination of underlying
asset, put purchase, and call sale described in the lecture delivers not an approxima-
tion to the indicator function of the interval (p̄, p̄ + ε) as was claimed, but instead an
approximation to a risk free security. A corrected argument is given below.

You are not responsible for being able to reproduce this argument (in this course),
and the main point relevant to the rest of the lecture, that arbitrary yield functions
π(p) can be approximated by combinations of purchases and sales of European puts
and calls and the underlying asset, is still correct.

2. Correct argument

A European call option with strike price p̄ is an asset with yield, as a function of the
price p of the asset itself at the strike date,

γ(p; p̄) =

{
0 p ≤ p̄

p− p̄ p > p̄
.

A European put option with strike price p̄ has a yield function

φ(p; p̄) =

{
p̄− p p ≤ p̄

0 p > p̄
.

And of course the underlying asset itself has yield function θ(p) ≡ p = γ(p; 0).
Linear combinations of these payout patterns can reproduce exactly any yield func-

tion π that consists entirely of linear line segments. To see why, consider first that for
any p̄, −γ(p; p̄) + φ(p; p̄) + p ≡ p̄. In other words, a risk-free yield of p̄ can be arranged
by buying a put option and the same amount of the underlying stock, while selling the
same amount of a call option. Furthermore, given any yield function π, we can change
the slope of π by a at all values of p > c by adding to it aγ( · ; c). Thus for any π made
up of linear line segments, we can match π(0) with a risk-free combination of securities,
then match π′(0) by adding (or selling short) some of the underlying security, then at
each node pi where the slope changes, adding an appropriate (positive or negative)
amount of γ(p; pi).
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The equations to be solved to find the appropriate amounts of each type of security
to match a linear-line-segment π defined by its values π(pi) at a set of points {pi}n

i=1

(with p0 = 0 and π(p) ≡ π(pn) for p > pn) are given by:

w = π(0)

y = w + π′(0)

x1 = π′(p1)− π′(p0)

...

xn = −π′(pn−1) ,

where w is the amount purchased of a put option with strike price π(0), y is the amount
purchased of the underlying asset, and xi, i = 1, . . . , n is the amount purchased (sold
if xi < 0) of a call option with strike price pi. In these formulas each π′(pi) is the right
derivative of π at pi.

It is then easy to see that we could closely approximate the indicator function 1(g,h)(p)
as a yield function by purchasing (say) 100 call options with strike price g− .01, selling
100 call options with strike price g, selling 100 call options with strike price h, and
buying 100 call options with strike price h + .01. We can make the approximation
arbitrarily good by replacing 100 and .01 in this prescription with ψ and 1/ψ, and
taking ψ very large.

Exercises to check your understanding:
You do not need to hand this in, but if you can’t figure out how to go about answering
these questions, ask.

(a) The stock price is currently $100 per share. A put option to sell it a week from
now at $50 per share is priced at $3.75. A call option to buy it a week from
now at $50 is priced at $54. What is the risk free interest rate?

(b) In addition to the prices given in the previous question, suppose we know that
we have the following list of call option prices for the same date:

strike price market price
49 55.00
51 53.05
59 45.00
60 44.50
61 44.05

Use this information to put upper and lower bounds on the price of a security
that pays $10 if the stock price at the strike date is between $50 and $60, and
pays zero otherwise (i.e. a security with payout π = 1(50,60)). What do these
imply as bounds on P [$50 < p < $60], where p is the stock price at the strike
date and P is the market probability as discussed in class?


