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1. WHY “MODELS” AND “PARAMETERS”?

1.1. The radical Bayesian view. Models are a misleading construct. In this view,
inference is always related to decision-making. We have a vector [X, Y] of quantities
we have not observed and are uncertain about. To make good decisions, we must
start with a probability distribution, say defined by the density p(x, y), over these
uncertain quantities. Then we observe X. Since we still have not seen Y, we now
need a probability distribution over Y for decision-making, and to be consistent we
should form it as the pdf p(y | x). No parameters or models have had to enter our
discussion. There is just what we see, X, and what we don’t see, Y, and inference is
just going from p(x, y) to p(y | x).

1.2. The radical non-Bayesian view. It is inappropriate, at least in scientific dis-
course, to apply the notion of probability to purely subjective uncertainty. If β is a
physical constant, we may not know its value, but it nonetheless has a single, un-
changing value that is not in any sense “random”. It is pointless to put a probability
distribution on it. In such a case we might well be confident that an observable
variable Yt has for every t a probability distribution defined by a pdf p(y; β). (Note
that I did not write p(y | β). That would suggest that β is a random variable we
are conditioning on.) Knowing p(y; β) and observing a sequence of i.i.d. Yt’s may
provide us with information about β’s value. Various functions of {Yt, t = 1, . . . , T}
may turn out to have the property that they lie close to β with high probability. But
the probability attaches to the functions of {Yt}, not to β.

1.3. The relaxed Bayesian view. People find models a useful way to communi-
cate statistical results, and we need to understand why. We start, like the radical
Bayesian, with a division of unknowns into those to be observed, X, also called
data, and those that will remain unobserved Y. We divide Y further as Y = [β, Z],
where β are parameters and Z are something else, which might sometimes be called
“nuisance parameters”, other times “unobservable components”. The model is
p(x, z | β). In order to carry out inference, we have to form the posterior pdf g(z, β | x).
To do this we need to form the full joint pdf for (X, Z, β), so we need what is called a
prior pdf for β — a marginal pdf q(β) that can be combined with the model to form
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a joint pdf as h(x, z, β) = p(x, z | β)q(β). From there we form the posterior by the
usual rule for forming a conditional pdf from a joint one, so we compute

g(z, β | x) =
p(x, z | β)q(β)∫

p(x, z | β)q(β) dβ dz

Why bother with all this terminology, when what we end up doing is just what
the radical Bayesian does? The reason is that it can be useful to distinguish between
components of our uncertainty that are widely agreed upon, or at least widely re-
garded as interesting possibilities, by our audience, and those components that our
audience disagrees widely about. The former components make up the model, the
latter make up the prior. We try to present results so that they will be useful to an
audience that may have widely differing priors.

Isn’t this just what non-Bayesian inference does — analyze data without using
subjective elements like prior distributions over parameters? No. A relaxed Bayesian
approach does avoid making conclusions sensitive to a particular prior, but it pre-
serves the view that results are ultimately to be combined with a prior to make
decisions. Where possible, it tries to present results that summarize the shape of the
function p(x, z | β) as a function of β and z with x fixed — the likelihood function.
While in many leading cases what is reported by classical statisticians can be inter-
preted as summarizing the shape of the likelihood, this is not true in some important
econometric models — nonstationary time series models for example.

Note that most discussions of this subject leave out Z, and thereby make β, the
parameter vector, coincident with Y, what we do not observe. We will do the same
from here on in these notes. The presence of unobservable Z’s that are not parame-
ters can create difficult problems for inference and for reporting of results, but they
have to be dealt with in the context of specific models.

1.4. The Likelihood Principle. In our discussion here, the idea that we should re-
port the shape of the likelihood emerges naturally from a version of a Bayesian per-
spective. It is possible to derive from axiom systems roughly this same conclusion,
though we will not do so here. This conclusion that everything useful that the data
has to say about the parameters is contained in the likelihood function is what is
known as the likelihood principle.

1.5. Identification. Suppose our model were p(x | β), but it happened that p(x | β)
was the same for all β. In other words, the model implies that the distribution of
X does not depend on β at all. Then of course the likelihood would always be
completely “flat”, equal to a constant function of β for every value of x. This is the
most extreme version of a situation where β is not identified. The data in this case
provide us with no information about β at all.

Less extreme cases:
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• p(x | β) does not depend on β for some values of x but for others it does. In
this case, if we observe an X value for which the likelihood is flat, we can say
that β is not identified in this sample.

• However classical statisticians would usually say that what counts is whether
p(x | β), regarded as a function of x over the whole range of possible x’s, de-
pends on β. In this case, if we can draw repeated samples of x, we will
eventually get one for which the likelihood is not flat. This is what is most
commonly meant by saying that “β is identified”, if there are no qualifying
phrases attached. The concepts below, of local identification and of iden-
tification of individual parameters, also can be interpreted as applying to
particular samples or instead to the behavior of the whole p(· | β) function.

• It could be that p(x | β) does depend on the vector β, but does not depend on
some components of the vector. Then we could say that β2, for example, is
not identified even though β j is identified for j 6= 2.

• It could be that the likelihood, though not flat everywhere, is flat in some
neighborhood of a point β∗. Then we say that β is locally unidentified at β∗.

2. BAYESIAN MECHANICS FOR THE STANDARD NORMAL LINEAR REGRESSION
MODEL

The SNLM often denoted by the equation Y = Xβ + ε, asserts the following con-
ditional pdf for the vector of Y data conditional on the matrix of X data and on the
parameters β, σ2:

p( Y
T×1

| X
T×k

) = ϕ(Y − Xβ; σ2 I) = (2π)−T/2σ−T exp
(

(Y − Xβ)′(Y − Xβ)
2σ2

)
(1)

The most common framework for Bayesian analysis of this model asserts a prior that
is flat in β and log σ or log σ2, i.e. dσ/σ or dσ2/σ2. However, there are arguments
in favor of other improper priors as a starting point, most prominently for using
dσ/σk+1.1 We will assume the prior has the form dσ/σp, then discuss how the results
depend on p.

2.1. Marginal for σ2. We let u(β) = Y−Xβ and denote the least squares estimate as
β̂ = (X′X)−1X′Y. Also û = u(β̂). Then the posterior can be written, by multiplying

1This is the prior to which the reasoning behind Jeffreys priors leads. Jeffreys himself, though,
favored the dσ/σ prior for this model. You are not expected for this course to learn how Jeffreys
priors are derived.
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(1) by σ−p and rearranging, as proportional to

σ−T−p exp

(
− û′û + (β− β̂)′X′X(β− β̂)

2σ2

)
dβ dσ

= σ−T−p exp
(
− û′û

2σ2

) (
σk ∣∣X′X

∣∣− 1
2
)
σ−k ∣∣X′X

∣∣ 1
2 exp

(
− (β− β̂)′X′X(β− β̂)

2σ2

)
dβ dσ

∝ σ−T−p+k ∣∣X′X
∣∣− 1

2 exp
(
− û′û

2σ2

)
ϕ
(

β− β̂; σ2(X′X)−1) dβ dσ

∝ v(T+p−k)/2 exp
(

û′û
2

v
)

dβ
dv

v3/2 , (2)

where v = 1/σ2. Integrating this expression w.r.t. β and setting α = û′û/2 gives us
an expression proportional to

v(T+p−k−3)/2 exp
(
− û′û

2
v
)

dv ∝ α(T+p−k−1)/2v(T+p−k−3)/2e−αvdv ,

which is a standard Γ((T + p − k − 1)/2, α) pdf. The prior arising from the multi-
variate Jeffreys analysis, p = k + 1, therefore gives a Γ(T/2, α) pdf for v, regardless
of k. The prior more usually called a Jeffreys prior, dσ/σ, produces a Γ((T− k)/2, α)
distribution for v. The number T − k is what is in this model called the degrees of
freedom. Note that unless there are positive degrees of freedom, the X′X matrix will
not be invertible, the prior times the likelihood will therefore not be integrable in β,
and the derivation we have just given does not go through. Because it is v = 1/σ2

that has the Γ distribution, we say that σ2 itself has an inverse-gamma distribution.
Since a Γ(n/2, 1) variable, multiplied by 2, is a χ2(n) random variable, some prefer
to say that û′û/σ2 has a χ2(T − k) distribution, and thus that σ2 has an inverse-chi-
squared distribution.

2.2. Marginal on β. Start with the same rearrangement of the likelihood (2), and
rewrite it as

v(T+p−3)/2 exp
(
−1

2
u(β)′u(β)v

)
dv dβ .

As a function of v, this is proportional to a standard Γ
(
(T + p− 1)/2, u(β)′u(β)/2

)
pdf, but here there is a missing normalization factor that depends on β. When we
integrate with respect to v, therefore, we arrive at

(
u(β)′u(β)

2

)−(T+p−1)/2

dβ ∝

(
1 +

(β− β̂)′X′X(β− β̂)
û′û

)−(T+p−1)/2

dβ .
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This is proportional to what is known as a multivariate tn
(
0, (û′û)/n

)
pdf, where

n = T + p− k− 1 is the degrees of freedom. It makes each element of βi an ordinary
univariate tn(β̂, s2

β), where s2
β = s2(X′X)−1

ii and s2 = û′û/n. As you will see later

in the course, the sampling distribution of (β̂− β)/sβ, considered as random across
Y’s with β and σ2 fixed, is tn(0, 1), which, if we take p = 1, exactly matches the
implied posterior distribution of the same expression when considered as varying
randomly with β while β̂ and s2

β remain fixed. Thus the statistics computed from the
data can be analyzed with the same tables of distributions from either a Bayesian or
non-Bayesian perspective.


