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1. DERIVATION OF THE CHANGE OF VARIABLES RULE

• Let `(a, b, c, d) denote the parallelogram in R
2 defined by the two vectors (a, b)

and (c, d). See the graph in Figure 1. The area of such a parallelogram can be
found (recall high school geometry) as “base times height”, where here the base
can be taken as the length of the vector (c, d) and the height as the length of the
line labeled “h”, which runs from (a, b) to meet (c, d) in a 90◦ angle. It is perhaps
somewhat surprising that this turns out to be exactly the same as

ad − bc =

∣
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,

but you should be able to verify this for yourself.
• If X, Y have joint pdf p(x, y), the probability of a small square with one corner

x, y and the other x + δ, y + δ is approximately p(x, y)δ2. Suppose U = f (X, Y),
V = g(X, Y). With f and g differentiable, our square in x, y-space gets mapped
into a parallelogram in u, v-space of the form

(

f (x, y), g(x, y)
)

+ `
(

D1 f (x, y)δ, D1g(x, y)δ, D2 f (x, y)δ, D2g(x, y)δ
)

.
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FIGURE 1. `(a, b, c, d)
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That is, a parallelogram with one corner at (u, v) = ( f (x, y), g(x, y)) and defined
by the two vectors starting from (u, v) and going to (u, v)+ (D1 f (x, y)δ, D1g(x, y)δ)
and (u, v) + (D2 f (x, y)δ, D2g(x, y)δ. Note that the square we started with in x, y-
space is itself (x, y) + `(δ, 0, 0, δ). If g(u, v) is the pdf of U, V, then for small δ it
must be true that the probability of this parallelogram is approximately its area
times g(u, v), i.e.

(

D1 f (x, y)D2g(x, y)− D1g(x, y)D2 f (x, y)
)

δ2g(u, v) =

∣

∣
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∣

∂(u, v)

∂(x, y)

∣

∣

∣

∣

δ2g(u, v) .

But this must also be the probability of the small square in x, y-space that we
started with, which allows us to conclude that

g(u, v)

∣

∣

∣

∣

∂(u, v)

∂(x, y)

∣

∣

∣

∣

= f (x, y) ,

which is the change of variables formula.
• It should be clear that this argument generalizes to R

k as soon as we verify that
the volume of a k-dimensional parallelogram defined by k vectors aij, i = 1 . . . k,
j = 1 . . . k in R

k is
∣

∣aij
∣

∣. This task is left to the skeptical student.

2. QUANTILES

• p′th quantiles: xp ∈ R such that P[X < xp] = p.
• median, quartiles, interquartile range. Common substitutes for mean, standard

deviation (square root of variance).
• Insensitive to tail behavior.
• Not linear. So mean and variance usually allow a better estimate of the me-

dian and interquartile range of a sum of independent, identically distributed,
(i.i.d) variables than do median and interquartile range of the individual vari-
ables themselves.

3. TAYLOR EXPANSION OF log p

• Recap of Taylor series:

f (x)
.
= f (x0) + D f (x0)(x− x0) + 1

2! (x− x0)
′D2 f (x0)(x− x0) + ...

• This is not going to work well if applied to a pdf directly, because p > 0, p(x) → 0
as x → ∞. Polynomials can’t behave that way.

• But e raised to a polynomial exponent does behave that way, so long as the degree
of the polynomial is even and the largest power appearing in it has a negative
coefficient.

• A very widely applied strategy for summarizing a distribution, especially when
it is high-dimensional: a second order Taylor expansion of log p.
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• Usually x0 = argmax {p(x)} or some point close to it. Accuracy of the expan-
sion is greatest near x0, and accuracy of log p approximation matters little for
probability purposes in regions where p .

= 0.
• So in the univariate case we are approximating p(x) by

p̂(x) = ea2(x−x0)
2+a1(x−x0)+a0 .

• If p(x0) is the maximum of p, then Dp(x0) = 0, so a1 = 0.
• a0 just scales p̂, and most often we are free to choose it so that p̂ integrates to 1.
• a2 = 1

2 D2 log p(x0), which has to be negative for this to work.
• A pdf of this form, with a0 chosen so it integrates to 1, is called a N(x0,−1/(2a2))

distribution. It has mean zero and variance −1/(2a2) = −1/D2 f (x0). The stan-
dard way to write it is as the pdf of a N(µ, σ2) distribution:

1√
2π

e−
(x−µ)2

2σ2

• The Taylor series approximation we are discussing, then, approximates p by a
normal distribution with mean µ = argmax(p) and variance −1/D2 log p(µ).

4. THE MULTIVARIATE NORMAL

• This kind of approximation can be done as well when X is a vector. Then the
approximating pdf takes the form

e(x−x0)′a0(x−x0)+a1(x−x0)+a0 .

As before, if we expand around the peak of the pdf, a1 = 0.
• The multivariate normal pdf has the form

ϕ(x | µ, Σ) =
1

(2π)n/2 |Σ|
−1/2 e−

1
2 (x−µ)′Σ−1(x−µ) .

This is a pdf, and it has mean µ and variance matrix Var(X) = Σ. Our ap-
proximation is then a multivariate normal with µ = argmax(p(x)) and Σ =

−
(

D2 log p(µ)
)−1.

• The definition of Var(X):

µ2
n×n

= E[XX′], µ1 = EX, Var(X) = µ2 − µ1µ′1

5. PROPERTIES OF THE MULTIVARIATE NORMAL

• Consider any family of pdfs consisting of all pdf’s of the form p(x) = g(x′a2x +
a1x + a0), where g is fixed and the ai’s vary over the family, and where a2 is
positive definite. If z = Ax and A is square with |A| 6= 0, the pdf of z remains
within the same family (i.e. can be written with the same g, just different a’s. As
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a special case, a linear transformation of a normal random vector is itself normal.
Follows from application of the change of variables rule.

• If X is jointly normal, all marginal and conditional distributions of individual X’s
or groups of X’s are also normal. This is not too hard to see — they all end up as
pdf’s whose logs are quadratic.

• A multivariate random vector X is independent if and only if it has a diagonal Σ

matrix, i.e. if and only if all the Xi’s have zero covariances with each other. (The
covariance of Xi with Xj, written Cov(Xi, Xj) is the i, j’th element of Var(X), i.e.
E[XiXj]− E[Xi ]E[Xj].) This means also that if we have a jointly normal random
vector, and all its elements are pairwise independent, then the full vector is inde-
pendent. As we noted earlier, this is not true in general for variables that are not
jointly normal.

• If X, Y are independent, then Cov(X, Y) = 0. The reverse implication is not true
in general.

6. NORMAL CONDITIONAL DENSITIES: DETAILS

Note that some of the expressions on the board during the lecture that covered this
contained mistakes in signs, subscript order, etc. The formulas below should be right.

[

X1
X2

]

∼ N
([

µ1
µ2

]

,
[

Σ11 Σ12
Σ21 Σ22

])

We introduce the notation

Σ =

[

Σ11 Σ12
Σ21 Σ22

]

Σ−1
[

Σ11 Σ12

Σ21 Σ22

]

Therefore the joint pdf is (where Xi is ni × 1)

p(x1, x2) = (2π)−(n1+n2)/2 |Σ|−
1
2 ·

exp
(

−1
2

(

(x1 − µ1)
′Σ11(x1 − µ1) + 2(x1 − µ1)

′Σ12(x2 − µ2) + (x2 − µ2)
′Σ22(x2 − µ2)

)

)

.

In forming the conditional pdf of X2 |X1, we care only about how this expression behaves
as a function of x2, and we would like to cast the exponent, which is the only part that
depends on x2, in the standard form of a N(µ, Σ) pdf. It is a standard exercise in the
algebra of “completing the square” to determine that the argument of exp can be written
as

(x2 − µ2 − β(x1 − µ1))
′Σ22(x2 − µ2 − β(x1 − µ1)) + a function of x1 ,

where
β = −

(

Σ22)−1
Σ21 .
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From this it is clear that, once normalized to integrate to one, the distribution will be of
the form

N
(

µ2 + β(x1 − µ1),
(

Σ22)−1
)

Notice that this means
• The conditional variance of X2 |X1 does not depend at all on X1.
• The conditional mean depends linearly on X1, and is the same as the uncondi-

tional mean µ2 when X1 = µ1.
• When Σ12 = 0, which is true if and only if Σ12 = 0, The conditional distribution

is the same as the unconditional distribution and does not depend on X1. I.e., in
this case X1, X2 are independent of each other.

These formulas are more useful if we rewrite them in terms of the four blocks in the
original Σ matrix rather than the blocks of Σ−1. Note that, from the fact that Σ−1Σ = I,

Σ21Σ11 + Σ22Σ21 = 0 .

From this we can see immediately that

β = −
(

Σ22)−1
Σ21 = Σ21Σ−1

11 .

We also know that
Σ21Σ12 + Σ22Σ22 = Σ22(βΣ12 + Σ22) = I .

From this and our previous expression for β it is easy to get
(

Σ22)−1
= Σ22 − Σ21Σ−1

11 Σ12 .

So an alternative expression for the pdf of X2 |X1 is

N
(

µ2 + β(x1 − µ), Σ22 − Σ21Σ−1
11 Σ12

)

, where β = Σ21Σ−1
11 .

7. PRINCIPAL COMPONENTS

• Var(X) must be a positive semi-definite (p.s.d.) matrix. If c is a 1 × n vector
of constants and Z = cX, then linearity of E implies Var(Z) = c Var(X)c′. But
this must be non-negative, then, for any c, and c Var(X)c′ ≥ 0 for every c is the
definition of Var(X) p.s.d.

•
Var(X) = Σ , Z

k×n
= cX , ⇒ Var(Z) = cΣc′ .

• Any p.s.d. matrix Σ can be written as

Σ = Q′DQ ,

with Q′Q = I (Q orthonormal) and D diagonal, with all its diagonal elements
non-negative.

• Therefore X ∼ N(µ, Σ) implies Z = QX ∼ N(Qµ, D) and X = Q′Z. This means
X can be represented as a linear combination of independent normal variables.
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• The Z variables are known as the principal components of X. It sometimes hap-
pens that a few diagonal elements of D, say the first q, are much larger than the
others. This means that the corresponding Z’s have much bigger variance than
the others, so that

q

∑
j=1

Qj·Zj

is a good approximation to X. (X is exactly this sum, if we let q be n. It is
approximately this sum with q < n if the variances of the Zj’s are all small for
j > q.)

• So with a large covariance matrix, reporting the first q rows of Q and the corre-
sponding first q diagonal elements of D, may give a good summary of the struc-
ture. Of course it may also turn out that the diagonal elements of D are rather
similar, so this strategy for summarizing does not work.

• Principal components analysis is sensitive to the units in which data are mea-
sured. If some of our data are distances, measured in feet, and others are weights,
measured in pounds, we might consider changing everything to meters and kilo-
grams. The calculated Q and D would then be different, and not just by the
rescaling effects we would expect from the change in units. The resulting metric
Z vector will be different, not just a rescaling of the original English system Z
vector. Hence it is not a good idea to work too hard at giving substantive inter-
pretations to principal components.

8. CHOLESKI DECOMPOSITION

Principal components correspond to just one way of writing Σ = W ′W. With such
a representation, we can always define Z = (W ′)−1X, which makes Var(Z) = I, and
then in turn write X = W ′Z, giving us a representation of X as a linear combination of
independent N(0, 1) random variables. Principal components amounts to taking W =

D1/2Q. We get a good summary if only a few rows of W contain large coefficients (as if
only a few diagonal elements of D are large, in the case of principal components).

We can always, for p.s.d. Σ, find a W that is upper triangular, meaning its elements ωij
are zero for i > j, and that satisfies Σ = W ′W. Such a factoring of Σ is called a Choleski
decomposition of Σ. It, too, may provide a good summary of the data if only a few rows
of W are large. Notice that there are two extreme cases: Only the first few rows of W are
large, or only the last few rows of W are large. If only the last few rows of W are large,
then because it is upper triangular, only the lower right corner is large. That means that
all the elements of X are small except the last few. While this does provide a summary
statement about the nature of Σ, we didn’t need a decomposition to describe it. More
interesting is the case where the only first few rows of W are large. This implies that all
the X’s depend mainly on the first few Z’s only. Furthermore, because of the triangular
structure, the first few Z’s are linear combinations of the first few X’s alone. So with this
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structure, the first few elements of X can be thought of as “determining” the remaining
ones.

The Choleski decomposition, unlike principal components, is scale-invariant. That is,
premultiplying X by a positive definite diagonal matrix will leave the Z’s implied by the
Choleski decomposition unchanged. On the other hand, the Choleski decomposition, un-
like principal components, obviously does depend on how the elements of X are ordered.
There may be substantive considerations that suggest that some small subset of variables
are naturally thought of as “determining” the rest. In this case, a Choleski decomposition
with those variables at the top of the X vector is appealing, as it has some substantive
interpretation as well as some chance of showing us a simple structure for Σ.

9. INEQUALITIES

Markov:
P[X ≥ 0] = 1 and E[X] = c ⇒ P[X ≥ b] ≤ c

b
.

Chebyshev:
E[X2] = c ⇒ P[|X| ≥ b] ≤ c

b2

Jensen’s:
f concave, E[X] < ∞ ⇒ E[ f (X)] ≤ f (E[X])

Observe that if we let b → ∞ in the Markov inequality, we conclude that the cdf of X
must converge to 1 at the rate c/b, i.e. “harmonically” in b. Many distributions decline
faster than this, but if the distribution has finite expectation it must decline at least this
fast. If we let b → ∞ in the Chebyshev inequality, we get a similar bound on the rate of
convergence of the cdf to 0 and 1 as its argument goes to ±∞, though this bound is more
stringent, since it implies convergence at the rate 1/b2.


