1. GEOMETRIC THINKING ABOUT CONDITIONAL EXPECTATION

e We can think of p(y | x) as formed from p(x, y) by taking a “section” or “slice” of
the 3-d surface formed by p(x,y) along the vertical line defined by a fixed value
of x, then scaling it to integrate to one.

e We can think of p(x,y| A) as formed from p(x, y) by restricting p(x,y) to the set
A, then scaling it to integrate to 1 over A.

e In both cases, there is an implicit notion of what the underlying sub-c-field is.
This can trip us up.

e Suppose S = {(x,y) € R?|y > 0}. We can “coordinatize” this space either with
rectangular coordinates (x,y) or with polar coordinates p,6. 6 = /2 and x = 0
then characterize exactly the same set of points. But

E[Z|0=7/2] #E[Z|x=0].

e Why? The sub-o-field generated by ©(x,y) = arctan(y/x) consists of wedges,
while that generated by X(x,y) = x consists of boxes.

e Lesson: Conditional expectation given a r.v. is not CE given the zero-probability
sets on which the r.v. takes particular values.

2. MARGINAL PDF’S FROM JOINT

e Marginal distribution
If we have a list of random variables X = {X, ..., X,,} with a joint pdf p(¥) on
R", we can ask what the implied distribution for X; alone is. This is the marginal
distribution of Xj. Its pdf g(x;) is found as

q(x1) /p X1, Xn)dxodxs...dxy, .

e Example
1) p(x,y) = .25e ¥~ ly=x]

2) a(x) = 25 / " -t gy — 5l

©) ) =25 e W dx = 2501+ lye

3. INDEPENDENCE

A collection of random variables {Xj,..., X, } on (S, F, P) is independent if for every
set of bounded Borel-measurable functions f1, ..., fu,

E [ﬁfo) = TTELF ()
=1 A
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Because probabilities are expectations of indicator functions, this implies also that for
events {A;} of the form {z € §|X;(z) € Bj}, where B; is a Borel set in R,

P [ﬂ Al = ﬁP[A]-].
j=1

In fact, this is sometimes, or even usually, used as the definition of independence. If the
X;’s have a joint density p, then they are independent if and only if p can be written in
the form

p(@) = pix),
j=1

in which case the individual p]"s are the marginal densities for the individual Xj’s. They
always have a joint cdf F, of course, and they are independent if and only if F has the
form

F) = [[F (),
=1

in which case the F;’s are the marginal cdf’s for the individual X;’s.

Note that if the X;’s are independent, then any subset of them are also independent.
But it is possible, for example, to have every X;, Xy pair with j # k independent when
considered as a pair, but the whole set of X;’s not independent.

4. THE CHANGE OF VARIABLES RULE

Suppose f: R — RF is a one-one (and thus invertible), differentiable, Borel-measurable
function and we have a joint pdf p(X) for a k-dimensional random vector X. Then if U is

—

the random vector defined as U = f(X), the pdf of U is

S1-1
of

9(@) = p(f(@) |55

Example: A standard family of distributions is the gamma distribution, usually
written with two parameters as I'(p, #) and with pdf on x > 0

txpxpflefax

I'(p)

where I'(p) is the gamma function. When p > Ois aninteger, I'(p) = (p —1)!. We
will use the change-of-variables rule to show that if X and Y are independently
I'(p,1) and I'(g,1) distributed, X + Y is distributed as I'(p + g,1). We will do so
by considering the transformation that maps x,y into u,v viau = x+y, v =
y/(x +y). The Jacobian of this transformation is

1 1
y x |21
(x+y)? (x+y?| “




The joint pdf of x, y is
x;ﬂ—lyq—le—(ery)

I'(p)T(q)

That of u, v is then
(u — )P~ (ou)T1ue
I'(p)I(q)

We need to integrate out the v term, to arrive at the marginal pdf for u. Note that
for a given value of u, because x and y are both non-negative, v can range only
over the interval (0,1). We can find the marginal pdf p of u as

Ly (- o) ter o
’ C(p)T(g)

Now we need to invoke another standard pdf, the Beta(p, ) pdf, which defines
a distribution over the interval (0,1) and has pdf on that interval

(1= x) T (p+q)
T(p)T(g)

Notice that the v in our expression above for p(u) enters only in a term that is
proportional to a Beta(p, q) pdf. We therefore know its integral and can conclude
that

( ) upti—lp—u
U) = ———
P T(p+aq)

i.e. thatu hasaI'(p+¢,1) pdf, which is what we set out to prove.
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5. GENERALIZING THE NOTION OF A DENSITY

o-finite measures: Like probability measures, except P[S]=1 is replaced by

[e0]

(3{A;} c F)((V))u(Aj) < o) and (S = U Aj).
j=1

Lebesgue measure: Measures sizes of sets consistently with the lengths of intervals
on the real line, or in Rk — length, area, volume.

Counting measure: Measures sizes of sets by counting points they contain. The
analogue for Z of Lebesgue measure on RR.

Continuity of measures: If two measures y and v (they can be probabilities, or just
o-finite), defined on the same c-field F, satisfy u(A) = 0 = v(A) = 0, then we
say v is continuous with respect to y, sometimes written v << . It turns out
that this is equivalent to the existence of a (measurable) function p, such that

(VA e Flv(A) = /Ap,,(x)y(dx).
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This result is known as the Radon-Nikodym theorem. To make it useful to us,
we need to define what integration with respect to “u(dx)” means. Most often
we have in mind Lebesgue measure as y, and in this case y(dx) means the same
thing as our usual “dx”. The theorem then says that if a probability has the
property that for any A € R with Lebesgue measure (length, volume, area, etc.)
0, P[A] = 0, then we can represent P as the integral of a density function.

6. EXERCISES

(1) Suppose Xj, Xy, X3 are three random variables, each taking on only two possible
values, 0 and 1. The probability that just one of the three X’s is 1 is .75, with each
X; being equally likely to be the non-zero one. There is also a probability .25 of
all three being 1. No other combinations of values are possible (obviously, since
we’ve described 4 mutually exclusive patterns of values, and their probabilities
add to one). Show that the three X’s are not independent. Show that each pair of
two X’s, considered just as a pair (i.e., using the pair’s marginal distribution), is
independent.

(2) A normal random variable X with mean 0 and variance 1 (a N(0,1) random
variable) has pdf

for x on R. Use the change of variables rule to prove that if U = .5X?, U is
distributed as a I'(3, 1) random variable. The distribution of the sum of squares
of n independent N(0,1) random variables is called a x?(n) (chi-squared with
n degrees of freedom) random variable. Use the result you have just proved,
together with the result on sums of independent I''s demonstrated in these notes,
to show that a x?(1) random variable is 2 times a I'(r/2,1) random variable.
(3) Suppose (X,Y) is distributed N (0, I); that is, they have joint pdf
S L a)

27_[6 .

Now we consider a transformation to polar coordinates:
(x,y) = (p,0)
p=1 ¥+

in[0,r]ify >0
f = arctan(y/x) {in E_n]o)?fy o

(a) Find the joint pdf of p, 6. Note that p lies in [0, ) and 6 is conventionally
taken to lie in [—7t, 77) (as here) or [0, 271).
(b) Construct a contour plot of this joint pdf in p, 0 space.



5

(c) Plot the conditional pdf for {p | 8 = 7t/2} and contrast it with the conditional
pdf for {Y| X =0, Y > 0}. To be more precise, in the notation of the notes,
tind the conditional pdf of p given the random variable 6 and evaluate it at
8 = 0, and find the conditional pdf of Y given the pair of random variables
X, 1gy>0y, evaluated at x = 0, 1;y-gy = 1. While this sounds complicated,
the latter conditional pdf is found simply by normalizing the joint pdf of X
and Y, taken as a function of y alone with x fixed at 0, so it integrates to 1
over [0,0). [The convention that X is a random variable, i.e. a function on
S, while its lower-case version x is a particular value of X, i.e. a real number,
has broken down a bit in this problem statement. There is a perfectly good
capital 6, ©, but capital p doesn’t exist, or rather would just come out R,
which is confusing. So for p and 6 I have been sloppy and used lower case
for both the random variables and their values.]



