1. GEOMETRIC THINKING ABOUT CONDITIONAL EXPECTATION

- We can think of p(y | x) as formed from p(x, y) by taking a "section" or "slice" of the 3-d surface formed by p(x, y) along the vertical line defined by a fixed value of x, then scaling it to integrate to one.
- We can think of p(x, y | A) as formed from p(x, y) by restricting p(x, y) to the set *A*, then scaling it to integrate to 1 over *A*.
- In both cases, there is an implicit notion of what the underlying sub- σ -field is. This can trip us up.
- Suppose $S = \{(x, y) \in \mathbb{R}^2 | y > 0\}$. We can "coordinatize" this space either with rectangular coordinates (x, y) or with polar coordinates ρ, θ . $\theta = \pi/2$ and x = 0 then characterize exactly the same set of points. But

$$E[Z \mid \theta = \pi/2] \neq E[Z \mid x = 0].$$

- Why? The sub- σ -field generated by $\Theta(x, y) = \arctan(y/x)$ consists of wedges, while that generated by X(x, y) = x consists of boxes.
- Lesson: Conditional expectation given a r.v. is *not* CE given the zero-probability sets on which the r.v. takes particular values.

2. MARGINAL PDF'S FROM JOINT

• Marginal distribution

If we have a list of random variables $\vec{X} = \{X_1, ..., X_n\}$ with a joint pdf $p(\vec{x})$ on \mathbb{R}^n , we can ask what the implied distribution for X_1 alone is. This is the **marginal distribution** of X_1 . Its pdf $q(x_1)$ is found as

$$q(x_1) = \int p(x_1,\ldots,x_n) \, dx_2 \, dx_3 \ldots dx_n \, .$$

• Example

(1)
$$p(x,y) = .25e^{-|x|-|y-x|}$$

(2)
$$q(x) = .25 \int_{-\infty}^{\infty} e^{-|x| - |y-x|} \, dy = .5e^{-|x|}$$

(3)
$$r(y) = .25 \int_{-\infty}^{\infty} e^{-|x| - |y - x|} dx = .25(1 + |y|)e^{-|y|}$$

3. INDEPENDENCE

A collection of random variables $\{X_1, ..., X_n\}$ on (S, F, P) is **independent** if for every set of bounded Borel-measurable functions $f_1, ..., f_n$,

$$E\left[\prod_{j=1}^{n} f_j(X_j)\right] = \prod_{j=1}^{n} E[f_j(X_j)].$$

Because probabilities are expectations of indicator functions, this implies also that for events $\{A_j\}$ of the form $\{z \in S \mid X_j(z) \in B_j\}$, where B_j is a Borel set in \mathbb{R} ,

$$P\left[\bigcap_{j=1}^{n} A_{j}\right] = \prod_{k=1}^{n} P[A_{j}].$$

In fact, this is sometimes, or even usually, used as the definition of independence. If the X_j 's have a joint density p, then they are independent if and only if p can be written in the form

$$p(\vec{x}) = \prod_{j=1}^n p_j(x_j)$$
 ,

in which case the individual p_j 's are the marginal densities for the individual X_j 's. They always have a joint cdf F, of course, and they are independent if and only if F has the form

$$F(\vec{x}) = \prod_{j=1}^n F_j(x_j) \,,$$

in which case the F_i 's are the marginal cdf's for the individual X_i 's.

Note that if the X_j 's are independent, then any subset of them are also independent. But it is possible, for example, to have every X_j , X_k pair with $j \neq k$ independent when considered as a pair, but the whole set of X_j 's not independent.

4. THE CHANGE OF VARIABLES RULE

Suppose $f : \mathbb{R}^k \to \mathbb{R}^k$ is a one-one (and thus invertible), differentiable, Borel-measurable function and we have a joint pdf $p(\vec{x})$ for a *k*-dimensional random vector \vec{X} . Then if \vec{U} is the random vector defined as $\vec{U} = \vec{f}(\vec{X})$, the pdf of \vec{U} is

$$q(\vec{u}) = p\left(\vec{f}^{-1}(\vec{u})\right) \left| \frac{\partial \vec{f}}{\partial \vec{x}} \right|^{-1}$$

Example: A standard family of distributions is the gamma distribution, usually written with two parameters as $\Gamma(p, \alpha)$ and with pdf on $x \ge 0$

$$\frac{\alpha^p x^{p-1} e^{-\alpha x}}{\Gamma(p)}$$

where $\Gamma(p)$ is the gamma function. When $p \ge 0$ is an integer, $\Gamma(p) = (p-1)!$. We will use the change-of-variables rule to show that if *X* and *Y* are independently $\Gamma(p, 1)$ and $\Gamma(q, 1)$ distributed, X + Y is distributed as $\Gamma(p + q, 1)$. We will do so by considering the transformation that maps x, y into u, v via u = x + y, v = y/(x + y). The Jacobian of this transformation is

$$\left| -\frac{1}{\frac{y}{(x+y)^2}} \quad \frac{1}{\frac{x}{(x+y)^2}} \right| = \frac{1}{u}.$$

The joint pdf of *x*, *y* is

$$\frac{x^{p-1}y^{q-1}e^{-(x+y)}}{\Gamma(p)\Gamma(q)}\,.$$

That of u, v is then

$$\frac{(u-uv)^{p-1}(vu)^{q-1}ue^{-u}}{\Gamma(p)\Gamma(q)}$$

We need to integrate out the v term, to arrive at the marginal pdf for u. Note that for a given value of u, because x and y are both non-negative, v can range only over the interval (0,1). We can find the marginal pdf p of u as

$$p(u) = \frac{u^{p+q-1} \int_0^1 (1-v)^{p-1} v^{q-1} dv}{\Gamma(p)\Gamma(q)}$$

Now we need to invoke another standard pdf, the Beta(p,q) pdf, which defines a distribution over the interval (0,1) and has pdf on that interval

$$\frac{x^{p-1}(1-x)^{q-1}\Gamma(p+q)}{\Gamma(p)\Gamma(q)}$$

Notice that the v in our expression above for p(u) enters only in a term that is proportional to a Beta(p,q) pdf. We therefore know its integral and can conclude that

$$p(u) = rac{u^{p+q-1}e^{-u}}{\Gamma(p+q)}$$
 ,

i.e. that *u* has a $\Gamma(p + q, 1)$ pdf, which is what we set out to prove.

5. GENERALIZING THE NOTION OF A DENSITY

 σ -finite measures: Like probability measures, except P[S]=1 is replaced by

$$(\exists \{A_j\} \subset \mathcal{F})((\forall j)\mu(A_j) < \infty) \text{ and } (\mathcal{S} = \bigcup_{j=1}^{\infty} A_j).$$

Lebesgue measure: Measures sizes of sets consistently with the lengths of intervals on the real line, or in \mathbb{R}^k — length, area, volume.

- **Counting measure:** Measures sizes of sets by counting points they contain. The analogue for \mathbb{Z} of Lebesgue measure on \mathbb{R} .
- **Continuity of measures:** If two measures μ and ν (they can be probabilities, or just σ -finite), defined on the same σ -field \mathcal{F} , satisfy $\mu(A) = 0 \Rightarrow \nu(A) = 0$, then we say ν is continuous with respect to μ , sometimes written $\nu \ll \mu$. It turns out that this is equivalent to the existence of a (measurable) function p_{ν} such that

$$(\forall A \in \mathcal{F})\nu(A) = \int_A p_\nu(x)\mu(dx).$$

This result is known as the Radon-Nikodym theorem. To make it useful to us, we need to define what integration with respect to " $\mu(dx)$ " means. Most often we have in mind Lebesgue measure as μ , and in this case $\mu(dx)$ means the same thing as our usual "dx". The theorem then says that if a probability has the property that for any $A \in \mathbb{R}^k$ with Lebesgue measure (length, volume, area, etc.) 0, P[A] = 0, then we can represent P as the integral of a density function.

6. EXERCISES

- (1) Suppose X₁, X₂, X₃ are three random variables, each taking on only two possible values, 0 and 1. The probability that just one of the three X's is 1 is .75, with each X_j being equally likely to be the non-zero one. There is also a probability .25 of all three being 1. No other combinations of values are possible (obviously, since we've described 4 mutually exclusive patterns of values, and their probabilities add to one). Show that the three X's are *not* independent. Show that each pair of two X's, considered just as a pair (i.e., using the pair's marginal distribution), is independent.
- (2) A normal random variable *X* with mean 0 and variance 1 (a N(0, 1) random variable) has pdf

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

for *x* on \mathbb{R} . Use the change of variables rule to prove that if $U = .5X^2$, *U* is distributed as a $\Gamma(\frac{1}{2}, 1)$ random variable. The distribution of the sum of squares of *n* independent N(0, 1) random variables is called a $\chi^2(n)$ (chi-squared with *n* degrees of freedom) random variable. Use the result you have just proved, together with the result on sums of independent Γ 's demonstrated in these notes, to show that a $\chi^2(n)$ random variable is 2 times a $\Gamma(n/2, 1)$ random variable.

(3) Suppose (X, Y) is distributed N(0, I); that is, they have joint pdf

$$\frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2)}.$$

Now we consider a transformation to polar coordinates:

$$(x, y) \to (\rho, \theta)$$

$$\rho = \sqrt{(x^2 + y^2)}$$

$$\theta = \arctan(y/x) \begin{cases} \text{in } [0, \pi] \text{ if } y \ge 0\\ \text{in } (-\pi, 0) \text{ if } y < 0 \end{cases}$$

- (a) Find the joint pdf of ρ , θ . Note that ρ lies in $[0, \infty)$ and θ is conventionally taken to lie in $[-\pi, \pi)$ (as here) or $[0, 2\pi)$.
- (b) Construct a contour plot of this joint pdf in ρ , θ space.

(c) Plot the conditional pdf for { $\rho | \theta = \pi/2$ } and contrast it with the conditional pdf for {Y | X = 0, Y > 0}. To be more precise, in the notation of the notes, find the conditional pdf of ρ given the random variable θ and evaluate it at $\theta = 0$, and find the conditional pdf of *Y* given the pair of random variables $X, \mathbf{1}_{\{Y>0\}}$, evaluated at $x = 0, \mathbf{1}_{\{Y>0\}} = 1$. While this sounds complicated, the latter conditional pdf is found simply by normalizing the joint pdf of *X* and *Y*, taken as a function of *y* alone with *x* fixed at 0, so it integrates to 1 over $[0, \infty)$. [The convention that *X* is a random variable, i.e. a function on *S*, while its lower-case version *x* is a particular value of *X*, i.e. a real number, has broken down a bit in this problem statement. There is a perfectly good capital θ , Θ , but capital ρ doesn't exist, or rather would just come out R, which is confusing. So for ρ and θ I have been sloppy and used lower case for both the random variables and their values.]