## 1. GEOMETRIC THINKING ABOUT CONDITIONAL EXPECTATION

- We can think of $p(y \mid x)$ as formed from $p(x, y)$ by taking a "section" or "slice" of the 3 -d surface formed by $p(x, y)$ along the vertical line defined by a fixed value of $x$, then scaling it to integrate to one.
- We can think of $p(x, y \mid A)$ as formed from $p(x, y)$ by restricting $p(x, y)$ to the set $A$, then scaling it to integrate to 1 over $A$.
- In both cases, there is an implicit notion of what the underlying sub- $\sigma$-field is. This can trip us up.
- Suppose $\mathcal{S}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$. We can "coordinatize" this space either with rectangular coordinates $(x, y)$ or with polar coordinates $\rho, \theta \cdot \theta=\pi / 2$ and $x=0$ then characterize exactly the same set of points. But

$$
E[Z \mid \theta=\pi / 2] \neq E[Z \mid x=0] .
$$

- Why? The sub- $\sigma$-field generated by $\Theta(x, y)=\arctan (y / x)$ consists of wedges, while that generated by $X(x, y)=x$ consists of boxes.
- Lesson: Conditional expectation given a r.v. is not CE given the zero-probability sets on which the r.v. takes particular values.


## 2. MARGINAL PDF'S FROM JOINT

## - Marginal distribution

If we have a list of random variables $\vec{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ with a joint pdf $p(\vec{x})$ on $\mathbb{R}^{n}$, we can ask what the implied distribution for $X_{1}$ alone is. This is the marginal distribution of $X_{1}$. Its pdf $q\left(x_{1}\right)$ is found as

$$
q\left(x_{1}\right)=\int p\left(x_{1}, \ldots, x_{n}\right) d x_{2} d x_{3} \ldots d x_{n}
$$

## - Example

$$
\begin{gather*}
p(x, y)=.25 e^{-|x|-|y-x|}  \tag{1}\\
q(x)=.25 \int_{-\infty}^{\infty} e^{-|x|-|y-x|} d y=.5 e^{-|x|}  \tag{2}\\
r(y)=.25 \int_{-\infty}^{\infty} e^{-|x|-|y-x|} d x=.25(1+|y|) e^{-|y|} \tag{3}
\end{gather*}
$$

## 3. INDEPENDENCE

A collection of random variables $\left\{X_{1}, \ldots, X_{n}\right\}$ on $(\mathcal{S}, \mathcal{F}, P)$ is independent if for every set of bounded Borel-measurable functions $f_{1}, \ldots, f_{n}$,

$$
E\left[\prod_{j=1}^{n} f_{j}\left(X_{j}\right)\right]_{1}=\prod_{j=1}^{n} E\left[f_{j}\left(X_{j}\right)\right]
$$

Because probabilities are expectations of indicator functions, this implies also that for events $\left\{A_{j}\right\}$ of the form $\left\{z \in \mathcal{S} \mid X_{j}(z) \in B_{j}\right\}$, where $B_{j}$ is a Borel set in $\mathbb{R}$,

$$
P\left[\bigcap_{j=1}^{n} A_{j}\right]=\prod_{k=1}^{n} P\left[A_{j}\right] .
$$

In fact, this is sometimes, or even usually, used as the definition of independence. If the $X_{j}$ 's have a joint density $p$, then they are independent if and only if $p$ can be written in the form

$$
p(\vec{x})=\prod_{j=1}^{n} p_{j}\left(x_{j}\right)
$$

in which case the individual $p_{j}$ 's are the marginal densities for the individual $X_{j}$ 's. They always have a joint cdf $F$, of course, and they are independent if and only if $F$ has the form

$$
F(\vec{x})=\prod_{j=1}^{n} F_{j}\left(x_{j}\right)
$$

in which case the $F_{j}$ 's are the marginal cdf's for the individual $X_{j}$ 's.
Note that if the $X_{j}$ 's are independent, then any subset of them are also independent. But it is possible, for example, to have every $X_{j}, X_{k}$ pair with $j \neq k$ independent when considered as a pair, but the whole set of $X_{j}$ 's not independent.

## 4. The Change of variables rule

Suppose $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is a one-one (and thus invertible), differentiable, Borel-measurable function and we have a joint pdf $p(\vec{x})$ for a $k$-dimensional random vector $\vec{X}$. Then if $\vec{U}$ is the random vector defined as $\vec{U}=\vec{f}(\vec{X})$, the pdf of $\vec{U}$ is

$$
q(\vec{u})=p\left(\vec{f}^{-1}(\vec{u})\right)\left|\frac{\partial \vec{f}}{\partial \vec{x}}\right|^{-1}
$$

Example: A standard family of distributions is the gamma distribution, usually written with two parameters as $\Gamma(p, \alpha)$ and with pdf on $x \geq 0$

$$
\frac{\alpha^{p} x^{p-1} e^{-\alpha x}}{\Gamma(p)}
$$

where $\Gamma(p)$ is the gamma function. When $p \geq 0$ is an integer, $\Gamma(p)=(p-1)$ !. We will use the change-of-variables rule to show that if $X$ and $Y$ are independently $\Gamma(p, 1)$ and $\Gamma(q, 1)$ distributed, $X+Y$ is distributed as $\Gamma(p+q, 1)$. We will do so by considering the transformation that maps $x, y$ into $u, v$ via $u=x+y, v=$ $y /(x+y)$. The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
1 & \frac{1}{y} \\
-\frac{y}{(x+y)^{2}} & \frac{x}{(x+y)^{2}}
\end{array}\right|=\frac{1}{u} .
$$

The joint pdf of $x, y$ is

$$
\frac{x^{p-1} y^{q-1} e^{-(x+y)}}{\Gamma(p) \Gamma(q)}
$$

That of $u, v$ is then

$$
\frac{(u-u v)^{p-1}(v u)^{q-1} u e^{-u}}{\Gamma(p) \Gamma(q)} .
$$

We need to integrate out the $v$ term, to arrive at the marginal pdf for $u$. Note that for a given value of $u$, because $x$ and $y$ are both non-negative, $v$ can range only over the interval $(0,1)$. We can find the marginal pdf $p$ of $u$ as

$$
p(u)=\frac{u^{p+q-1} \int_{0}^{1}(1-v)^{p-1} v^{q-1} d v}{\Gamma(p) \Gamma(q)}
$$

Now we need to invoke another standard pdf, the $\operatorname{Beta}(p, q)$ pdf, which defines a distribution over the interval $(0,1)$ and has pdf on that interval

$$
\frac{x^{p-1}(1-x)^{q-1} \Gamma(p+q)}{\Gamma(p) \Gamma(q)}
$$

Notice that the $v$ in our expression above for $p(u)$ enters only in a term that is proportional to a $\operatorname{Beta}(p, q)$ pdf. We therefore know its integral and can conclude that

$$
p(u)=\frac{u^{p+q-1} e^{-u}}{\Gamma(p+q)}
$$

i.e. that $u$ has a $\Gamma(p+q, 1) \operatorname{pdf}$, which is what we set out to prove.

## 5. GENERALIZING THE NOTION OF A DENSITY

$\sigma$-finite measures: Like probability measures, except $P[\mathcal{S}]=1$ is replaced by

$$
\left(\exists\left\{A_{j}\right\} \subset \mathcal{F}\right)\left((\forall j) \mu\left(A_{j}\right)<\infty\right) \text { and }\left(\mathcal{S}=\bigcup_{j=1}^{\infty} A_{j}\right)
$$

Lebesgue measure: Measures sizes of sets consistently with the lengths of intervals on the real line, or in $\mathbb{R}^{k}$ - length, area, volume.
Counting measure: Measures sizes of sets by counting points they contain. The analogue for $\mathbb{Z}$ of Lebesgue measure on $\mathbb{R}$.
Continuity of measures: If two measures $\mu$ and $v$ (they can be probabilities, or just $\sigma$-finite), defined on the same $\sigma$-field $\mathcal{F}$, satisfy $\mu(A)=0 \Rightarrow \nu(A)=0$, then we say $v$ is continuous with respect to $\mu$, sometimes written $v \ll \mu$. It turns out that this is equivalent to the existence of a (measurable) function $p_{v}$ such that

$$
(\forall A \in \mathcal{F}) v(A)=\int_{A} p_{v}(x) \mu(d x)
$$

This result is known as the Radon-Nikodym theorem. To make it useful to us, we need to define what integration with respect to " $\mu(d x)$ " means. Most often we have in mind Lebesgue measure as $\mu$, and in this case $\mu(d x)$ means the same thing as our usual " dx ". The theorem then says that if a probability has the property that for any $A \in \mathbb{R}^{k}$ with Lebesgue measure (length, volume, area, etc.) $0, P[A]=0$, then we can represent $P$ as the integral of a density function.

## 6. EXERCISES

(1) Suppose $X_{1}, X_{2}, X_{3}$ are three random variables, each taking on only two possible values, 0 and 1. The probability that just one of the three $X$ 's is 1 is .75 , with each $X_{j}$ being equally likely to be the non-zero one. There is also a probability .25 of all three being 1 . No other combinations of values are possible (obviously, since we've described 4 mutually exclusive patterns of values, and their probabilities add to one). Show that the three $X^{\prime}$ s are not independent. Show that each pair of two $X^{\prime}$ s, considered just as a pair (i.e., using the pair's marginal distribution), is independent.
(2) A normal random variable $X$ with mean 0 and variance 1 (a $N(0,1)$ random variable) has pdf

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

for $x$ on $\mathbb{R}$. Use the change of variables rule to prove that if $U=.5 X^{2}, U$ is distributed as a $\Gamma\left(\frac{1}{2}, 1\right)$ random variable. The distribution of the sum of squares of $n$ independent $N(0,1)$ random variables is called a $\chi^{2}(n)$ (chi-squared with $n$ degrees of freedom) random variable. Use the result you have just proved, together with the result on sums of independent $\Gamma$ 's demonstrated in these notes, to show that a $\chi^{2}(n)$ random variable is 2 times a $\Gamma(n / 2,1)$ random variable.
(3) Suppose $(X, Y)$ is distributed $N(0, I)$; that is, they have joint pdf

$$
\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}
$$

Now we consider a transformation to polar coordinates:

$$
\begin{gathered}
(x, y) \rightarrow(\rho, \theta) \\
\rho=\sqrt{\left(x^{2}+y^{2}\right)} \\
\theta=\arctan (y / x)\left\{\begin{array}{l}
\text { in }[0, \pi] \text { if } y \geq 0 \\
\text { in }(-\pi, 0) \text { if } y<0
\end{array}\right.
\end{gathered} .
$$

(a) Find the joint pdf of $\rho, \theta$. Note that $\rho$ lies in $[0, \infty)$ and $\theta$ is conventionally taken to lie in $[-\pi, \pi)$ (as here) or $[0,2 \pi)$.
(b) Construct a contour plot of this joint pdf in $\rho, \theta$ space.
(c) Plot the conditional pdf for $\{\rho \mid \theta=\pi / 2\}$ and contrast it with the conditional pdf for $\{Y \mid X=0, Y>0\}$. To be more precise, in the notation of the notes, find the conditional pdf of $\rho$ given the random variable $\theta$ and evaluate it at $\theta=0$, and find the conditional pdf of $Y$ given the pair of random variables $X, \mathbf{1}_{\{Y>0\}}$, evaluated at $x=0, \mathbf{1}_{\{Y>0\}}=1$. While this sounds complicated, the latter conditional pdf is found simply by normalizing the joint pdf of $X$ and $Y$, taken as a function of $y$ alone with $x$ fixed at 0 , so it integrates to 1 over $[0, \infty)$. [The convention that $X$ is a random variable, i.e. a function on $\mathcal{S}$, while its lower-case version $x$ is a particular value of $X$, i.e. a real number, has broken down a bit in this problem statement. There is a perfectly good capital $\theta, \Theta$, but capital $\rho$ doesn't exist, or rather would just come out $R$, which is confusing. So for $\rho$ and $\theta$ I have been sloppy and used lower case for both the random variables and their values.]

