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Fall 2002

Probability and Expectation

∗ What is Probability?

It’s the attachment of weights to uncertain prospects. Here are some examples
to dilute the dice-throwing and colored-balls-in-urns examples that fill up the beginning
chapters of many introductory probability texts.

Example You’re going to walk somewhere. It might rain. You have an umbrella you
could take with you. Carrying it will be an annoyance if it doesn’t rain, but you’ll wish
you had it if it does rain. Somehow, you decide, and this involves evaluating whether
it probably will rain or probably won’t. Also just how annoying is an unnecessary
umbrella and just how unpleasant is it to get wet.

You might look at the sky first, taking the umbrella if it’s dark, otherwise not taking
it. That’s statistical inference.

Example A European call option allows you to buy something, say a traded stock, at a
future date t∗ for a strike price p∗. The option is available in the market now, at time
t, for the price qt . In deciding whether to buy it, you have to assess how likely it is
that the stock price pt∗ at the strike date is above the strike price, and if so by how
much. A European put allows you instead to sell the underlying asset at the strike
date at a preset strike price. Clearly a call is worthless at t∗ if the actual price at the
strike date is below the strike price, and a put is worthless if the actual price at the
strike date is above the strike price.

You might look at pt . If pt << p∗, you might be willing to buy a call option only at a
low qt . That’s statistical inference.

∗ Copyright 2002 by Christopher A. Sims. This document may be reproduced for
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Contingent claims to a dollar

By buying and selling combinations of put options on the stock, call options on it, and the
stock itself, it turns out that we can arrange any pattern of payouts π(pt∗) at the strike
date, as a function of pt∗ , that we like.

The details of how this is done were badly garbled in lecture. A detailed discussion
is in a separate note.

As is shown in those separate notes, any pattern of yields π that is a piecewise
linear function of p can be matched exactly with combinations of purchases and sales
of call options, put options, and the underlying asset. Since piecewise linear functions
can approximate well any ordinary functions, we can therefore use market prices of puts,
calls and the underlying assets to find the price of any reasonable yield function π .

A security with payout function π will have some current price Q(π; t). Q(1;t) =
1/Rt is what is usually called the risk-free rate, expressed as a discount factor. In a
competitive market, E(π) = Q(π; t)/Q(1;t) behaves like what we will call an expectation
operator. That is, it maps a space S∗ of functions π into R and it satisfies

linearity of S∗:
π1,π2 ∈ S∗, a,b∈ R⇒ aπ1 +bπ2 ∈ S∗

linearity of E:
(∀a,b∈ R, π1,π2 ∈ S∗)E(aπ1 +bπ2)

= aE(π1)+bE(π2)

positivity: (∀p)π(p)≥ 0⇒ E(π)≥ 0

continuity:(
{πn}∞

n=1⊂ S∗ and (∀p∈ S)πn(p) ↓
n→∞

0
)

⇒ Eπn→ 0

sure-thing: E(1S∗) = 1.

Failure of the linearity of S∗ implies some restriction on markets: securities that we could
in principle construct are not priced. The last condition is an automatic consequence of
our definition of E. And failure of any of the remaining three conditions would imply an
arbitrage opportunity.

Events and probabilities
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With an expectation function E in hand, we can attach expectations to sets. If in
S∗ there is a function 1A(p) defined to satisfy

1A(p) =

{
1 p∈ A

0 p /∈ A,

then Q(1A; t) is the price at time t of a dollar delivered at time t∗ if and only if at that
time pt∗ ∈ A. When normalized by Rt to become E(1A), it is naturally thought of as a a
measure of how likely it is, based on information available to the market at time t, that we
will find in fact pt∗ ∈ A. We usually write such a measure as P(A), where P is thought of
as a function mapping subsets of S, the domain of the functions π in S∗, into the interval
[0,1].

Interpreting probabilities

• We derived our “market P” above from completeness and competitiveness of
markets, with no reference to whether pt∗ is “truly random” or to whether the
probabilities we have derived are “correct”.

• If you or I think the market probability, assigns far too much weight, e.g., to the event
pt∗ > p̄, as evidenced by a high price for the call option, we may take the short side
of call option contracts, expecting we will probably make money on them. This is
not an arbitrage opportunity.

• Since pt∗ will take on a value just once, we can’t think of P in terms of frequencies
of occurrence of events.

• There are proofs available that, under various assumptions, rational people should
make decisions under uncertainty as if they weighted uncertain future events with a
probability measure satisfying the properties we are about to derive. These proofs
work off the idea that otherwise in a sense nature, or competitors, can “arbitrage”
one’s behavior.

• Inference is the process of updating a P based on observed data, and the rules for
doing this in a consistent way do not depend on whether P is a market measure,
a personal set of beliefs of one individual, or is in some sense physical, based on
hypothetical or actual frequencies of events in repeated trials.
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• While everyone agrees on the rules for updating probabilities based on
observations, not everyone would agree that there is nothing more or less to
inference than this.

Properties of probability

If P is derived from an expectation operator that is in turn derived from an asset market
pricing function as we have just described, then it clearly satisfies

positivity: (∀A∈?)P(A)≥ 0

countable additivity:

(
(∀i, j ∈ Z+)Ai ∩A j = /0

)

⇒ P
( ∞⋃

j=1

A j

)
=

∞

∑
j=1

P(A j)

normalization: P(S) = 1.

σ -fields, measurable functions

To this point we have not been explicit about which functions π constitute the
domain of Q and (therefore) E. Also, we have discussed how to generate P(A) for a
subset A⊂ S, without saying anything about which subsets A we have in mind. And
we claimed with a heuristic argument that we could approximate “any” pattern π of
contingent payouts dependent on pt∗ .

In actual markets prices move in some minimal increment. It used to be “eighths”
on the NYSE, now it’s “cents”. So S is made up of a countable number of distinct points.
This makes S what is known as a discrete probability space . For any such space,
there is no need for separate discussion of which subsets of S P is defined on. It is OK,
and natural, to think of S∗ as including all bounded functions on S and to think of P(A) as
being defined for all subsets A⊂ S.

4



Complexities arising in Rk

As soon as we think about putting probability on R (not to mention Rk), however,
we run in to problems. We often would like to make the probability of every interval of
non-zero length non-zero, and to make the probability of every single point zero. It turns
out that it is impossible to make a probability measure behave this way on intervals and
points and at the same time to have it give every subset of R a well-behaved probability.
Subsets that have to be left out of the domain of definition of such a P on R, called non-
measurable sets , are exotic creatures that we do not encounter in econometric practice.
It takes pages of math just to describe them.

Nonetheless: Reasons σ -fields are worth studying

• The related jargon will turn up in papers you should be able to read.

• Stochastic processes and non-parametric models, both important in practice,
require thinking about cases where the points in S are themselves functions, where
related issues are more central.

• To model “information available” at a date or to an agent, the most widely used
structure is the notion of a class of verifiable events (sets). We want to be able
to put probabilities on such events, and hence require that an “information set”
correspond to a σ -field of verifiable events. Thus for information arriving over time,
the flow of information is represented as an indexed set of σ -fields, say {Ft}.

A σ -field F on S is a class of subsets of S satisfying:

1. A∈ F⇒ Ac ∈ F;

2.
(
(∀ j ∈ Z+)A j ∈ F

)⇒⋃∞
j=1A j ∈ F ;

3. S ∈ F.

Given any class of sets G, there is a well-defined minimal σ -field containing G.
Called the σ -field generated by G.

The σ -field generated by the intervals in R, or by the k-dimensional rectangles in
Rk, (

{
x∈ Rk | ai < xi < bi , i = 1, . . . ,k

}
), are called the Borel σ -fields in those spaces,

and in econometrics and statistics we always work with P’s defined on these σ -fields,
which we denote B.

This has a corollary: E operators on Rk are in practice always defined on sets of
measurable functions, i.e. functions π for which, for any a∈R,

{
p∈ Rk | π(p) < a

}∈B.
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