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ABSTRACT. Itis well known that if the relative variances of structural shocks change
across time spans we label “regimes”, then the coefficients of a structural VAR (SVAR)
are identified. If we assume that relative variances are constant within regimes, but in
fact they change within as well as across regimes, possibly because the dating of the
regimes is inaccurate, the coefficients are nonetheless usually estimated consistently.

[. IDENTIFICATION THROUGH HETEROSKEDASTICITY

A structural VAR model for an n-dimensional vector time series y; is written

A(L)yt = &¢, (1)

where A is a finite-order matrix polynomial in non-negative powers of the lag op-
erator and ¢; is a vector of structural shocks, independent (or at least uncorrelated)
across time and with a diagonal covariance matrix A; at each date t. If A is non-
singular, we can multiply the system through by A; ! to obtain its reduced from
representation
B(L)y: = 1t - 2
where
Var(n;) = % = Ay Ar(Ap) 7" 3
If A; = I, so there is no time variation in %, the reduced form model, because By = I
by construction, has (n? — n)/2 fewer parameters than the original SVAR form (1).
Identification through heteroskedasticity recognizes that if A; varies enough over
time, it may be possible to identify all the parameters of (1) without restrictions on
A(L).

In the simplest case, data can be split into two “regimes”, one period in which
At = AY and one in which it is Al. So long as A(L) is constant across the regimes,
B(L) will also be constant across the regimes. If for each regime we estimate B(L)
by maximum likelihood under Gaussianity assumptions or by least squares, we will
arrive at the maximum likelihood estimates within each regime. It is a standard
“seemingly unrelated regressions” result that we can get more efficient estimates of

Date: May 12, 2021.
This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

3.0 Unported License. http://creativecommons.org/licenses/by-nc-sa/3.0/.
1



SVAR IDENTIFICATION THROUGH HETEROSKEDASTICITY WITH MISSPECIFIED REGIMES 2

B(L) by simply running OLS on the whole sample, since with the same variables on
the right-hand side of every equation, accounting for the cross-correlation of resid-
uals has no effect on the Gaussian MLE. Regardless of how the residual covariance
matrix behaves or of whether the residuals are normally distributed, B(L), estimated
by OLS, will converge as sample size increases to the best linear predictor of y given
y’s history. As the number of observations within each regime gets large, therefore,

20— AFIAY(AGYY  and £ — ASTAYN(AYY, (4)

1Inry

where the indicates an ML estimate under Gaussian assumptions. But

(%)) 71y = AY(A”) T AL (Ap) . (5)

which implies that if all the diagonal elements A} /A? of (A%) 1Al are distinct, The
right eigenvectors of the product in (5) are the columns of Aj, This determines A up
to scale factors on those columns and the ordering of the columns. Thus it is clear
that A(L) can be estimated consistently under standard assumptions, so long as it is
constant across regimes and the ratios of structural shock variances across regimes
are all distinct.

II. CONSEQUENCES OF MISSPECIFIED REGIMES

What if we model the data as generated by two regimes with A® and A! constant
within each regime, as in the previous section, but in fact the first regime actually
has two distinct sub-regimes, with A% and A* prevailing in the two subregimes?
Then the estimated reduced form residual covariance matrix for the first regime will
converge in large samples to

A (NP + A1 - ) (A, (6)

where 7 is the proportion of the first regime in which A® prevails. But then it will
still be true that (£9)"!%! converges to a limit that has the columns of A} as right
eigenvectors, so A(L) will still be consistently estimated by the same procedures we
used for a constant A°.

There is likely to be a loss of efficiency from mis-specifying regimes, because the
averaging of diagonal A; values from distinct regimes reduces their variability. In a
given sample, though, if A3 and A*, say, differed only slightly, while both were quite
different from Al, The increased precision in the estimation of ¥0 from assuming
constant A? might offset the gains from recognizing A% # A%.

As a special case of this general argument, errors in specifying the ends or begin-
ning of regimes do not necessarily undermine identification, as they simply result in
regimes with non-constant A. Of course if the regimes are very badly specified, they
might end up with little cross-regime variation in %, despite large within-regime
variation and thus lead to inaccurate or even inconsistent estimates.
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III. t-DISTRIBUTED ERRORS

Brunnermeier, Palia, Sastry, and Sims (2018) use identification through heteroskedas-
ticity in a model where they also assume structural shocks are distributed as mutu-
ally independent univariate t. A perhaps surprising fact is that if this assumption
on the distribution of residuals is correct, identification is formally possible without
specifying any regimes at all. This is true because a vector of independent univari-
ate t random variables does not retain that distribution if linearly transformed, even
by an orthonormal matrix. The individual elements of the &; vector have a more
dispersed distribution than any non-trivial linear combination of them. Likelihood
based estimation using an assumption of independent univariate ¢t shocks will look
for Ay matrices that make large shocks occur in isolation, in individual ¢;s, rather
than in several ¢;; values at the same ¢.

Another approach to identification that has similarities to use of the independent
t assumption is a narrative approach that labels particular dates as likely to have
been dominated by particular structural shocks, and in effect chooses Ag to make
individual large ¢;; values line up with those dates.

However in the t-errors case we can no longer use the argument in the previous
section that with a Gaussian-error specification, variation in A within regimes leaves
estimates consistent even though constant-A within regimes is assumed. That argu-
ment relied on the specific structure of the Gaussian likelihood.

Suppose we use the independent-t likelihood, even though this is not the true
distribution of the structural shocks. So long as the shocks are in fact independent
of each other and of past values of y, each distributed symmetrically around zero,
and fat-tailed, estimates of the system dynamics are in general consistent. Consis-
tency will in the absence of further restrictions fail because of lack of identification,
of course, when the shocks have a joint normal distribution. Estimates will be incon-
sistent if the structural shocks have distributions thinner-tailed than the normal. In
what follows we sketch arguments that support these claims.

Under the symmetrically distributed errors assumption, the reduced form coeffi-
cients, and hence individual reduced form shocks #;; are consistently estimated. The
log likelihood under the independent-t distribution with degrees of freedom v is

v+1 (Aine(B))?
- ) log (1—|——> + Tlog |A|, (7)

it v

where A; is the i"th row of A in (1) and B represents all the coefficients in B(L) from
(2). The first-order conditions with respect to B for a maximum of this likelihood are

0
1 Ay 5e
_1/+ Z 1177taB . —0. (8)
v 1+;(Ai’7t) )
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The d7; /0B terms in this expression are just lagged dependent variables, which we
assume are independent of the true reduced form shocks. Because of the symmetry
assumption,

©)

Am(B)gh ] _
1+ 5 (Ame(B))?
when evaluated at the true value of the reduced form coefficients B, regardless of
what values the A; coefficients are set at. At other value of B, the residuals 7;(B)
would be correlated with lagged data, so (8) would fail. In other words, using this
likelihood function, together with our symmetry independence assumptions, im-
plies consistency of maximum likelihood estimates of B by standard GMM argu-
ments.

Now what about A;. We derive the FOC’s with respect to the elements of A;, with
the results for different i values stacked up. We evaluate the expression with B at its
true value, letting us use #; without its B argument in the FOC expression, The result

1S
v+1

14

Y AAnm =T(A) (10)
t

where A; is a diagonal matrix with typical diagonal element
1
1+ L(Am)?
and A (without subscript) is the matrix formed by stacking the A; vectors. When A

is set to the true value, the A coefficient of the A(L) polynomial in (1), A = &, so
multiplying (11) on the right by A’, we can write it as

(11)

v+11
- =1. 12
v TZ (1—1—8%/1/)(1—!—8%/1/) 12

it

Et€jt

With the structural shocks independent across i and t and symmetrically distributed
about zero, the expectation of the elements in the sum on the left-hand-side of this
equality is a diagonal matrix, — not in general an identity — matrix. It is a scalar
matrix if the €;;’s are in fact independent ¢ variates with v degrees of freedom. In that
case it will be the identity if we have normalized A(L) by scaling it so that the matrix
is the identity.

But if all we know about the distribution of the structural shocks is that they are
symmetrically distributed and independent, the solution to (11) is not a simple scalar
multiple of the true Ay. Itis, though, of the form MA,, where M is a diagonal matrix.
So by rescaling the rows of A by premultiplying it by a diagonal matrix ¥, we are
likely to be able to find an A* = YAy that solves (11).! But multiplying Ay by

1Likely, but not certainly. The expectatation of the left-hand side of (11) is bounded above as we
scale rows of A, while the right-hand side is not, so it is possible that the equation has no solution.
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log likelihood contours for independent t, df=3

FIGURE 1

a diagonal matrix only changes the implied variances of the structural shocks. In
other words, if we plot impulse responses of the system to structural shocks, this
kind of distortion in A only changes the scale of the impulse responses to any given
structural shock. This could distort estimated variance decompositions, but it does
not distort the shape of the time paths in the impulse responses or the relative sizes
of responses to a given shock.

We know that A(L) is not identified without further restrictions if the ¢’s are nor-
mally distributed. Normal shocks are certainly symmetrically distributed. And in-
deed the FOC’s for the MLE are satisfied under the ¢t likelihood when the truth is
that shocks are normal. The inconsistency arises because in the Gaussian case they
are also satisfied under any orthogonal rotation of the Ap matrix. We may get con-
sistency in non-Gaussian cases, because for non-Gaussian ¢, orthonormal rotations
of € generally change the expected value of the left-hand side of (12). This produces
identification when the distributions of the ¢;;’s are fat-tailed, but lack of identifica-
tion if they are normal and inconsistency if they are thinner-tailed than the normal
distribution.

To illustrate how this works, Figure 1 shows a contour plot of the log likelihood el-
ement for a pair of independent f variates with 3 degrees of freedom. It is clear that
the likelihood declines more slowly along the axes than along other rays through
zero. Therefore when ¢1; and ¢€y; are independent and have fat-tailed distributions
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Independent t log likelihood, shocks mixed Normal 02(.5, 1.5)
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FIGURE 2

(even if not #(3)), multiplying the € vector by an orthonormal matrix, which would
just rotate the scatter of (x,y) points on this likelihood plot, must reduce the likeli-
hood. Of course as the degrees of freedom in the ¢ likelihood increase, the shape of
these contours converges to the circular shape of a N(0,I) pdf, so likelhood is un-
changed by orthonormal transforms of the data. And distributions of € thinner-tailed
than the normal would generate inconsistency of t-likelihood-based estimation. We
illustrate this with Figures 2 and 3. They show how likelihood changes as A is ro-
tated, by orthonormal transformation, away from its true value. In Figure 2, the data
is drawn from two independent mixed normal distributions, which makes it fatter-
tailed than a normal, and one can see that likelihood is maximized at 0, 7t/2, and 7.
These rotation angles correspond to simply permuting the rows of A, which does not
affect the economic interpretation of the model. In Figure 3, the data are drawn from
independent uniform distributions. Here the true A solves the FOC’s of likelihood
maximization by being a local minimum of the likelihood.?

2Figures 2 and 3 were generated by creating a 10,000 by 2 array of draws from the mixed-normal
or the uniform distribution, respectively. Then for each value of the rotation angle 6, the data were
rotated by that angle and the sum of #(5.7) log likelihood elements was calculated. This is Monte
Carlo integration, of course, so it is important that the range of variation in the log likelihood shown
is large relative to the Monte Carlo standard errors. With data generated by draws from a ¢(40) pdf,
a sample of this size is not enough to accurately estimate the true pattern of variation in expected log
likelihood with 6, because the variation is very small.
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Independent t log likelihood, shocks U(-+3,3)
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FIGURE 3

IV. REGIME SHIFTS AND t-LIKELIHOOD

Identification through regime shifts in relative variances and through fat-tailed
distributions interacting with ¢ likelihood reinforce each other. There is a possible
downside to the combination, however, because with a a thin-tailed true distribution
for the structural shocks, the use of the t likelihood could undermine consistency,
even though with the Gaussian likelihood the regime shifts would give consistent
estimates. It is easy to check for this possibility, though. If the t assumption on the
structural shock distributions is correct, the consistently estimated structural shocks
based on the Gaussian likelihood should have a fat-tailed empirical distribution. If
not, it would make sense to stick with the Gaussian-likelihood estimates.
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