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Abstract. This paper discusses a number of areas of inference where dis-
satisfaction by applied workers with the prescriptions of econometric high
theory is strong and where a likelihood approach diverges strongly from
the mainstream approach in its practical prescriptions. Two of the applied
areas are related and have in common that they involve nonstationarity:
macroeconomic time series modeling, and analysis of panel data in the
presence of potential nonstationarity. The third area is nonparametric ker-
nel regression methods. The conclusion is that in these areas a likelihood
perspective leads to more useful, honest and objective reporting of results
and characterization of uncertainty. It also leads to insights not as easily
available from the usual perspective on inference.

1. Introduction

Many econometricians are committed, at least in principle, to the practice

of restricting probability statements that emerge from inference to pre-sample

probability statements—e.g. “If I did this analysis repeatedly with randomly

drawn samples generated with a true β of 0, the chance that I would get a β̂

as big as this is .046.” Of course if we are to make use of the results of analysis

of some particular data set, what we need is to be able to make a post-sample

probability statement—e.g., “Based on analysis of these data, the probability

that β is 0 or smaller is .046.” The latter kind of statement does not emerge as

an “objective” conclusion from analysis of data, however. If this is the kind of

probability statement we aim at, the objective part of data analysis is the rule

by which probability beliefs we held before seeing the data are transformed

into new beliefs after seeing the data. But providing objective analysis of data

that aims to aid people in revising their beliefs is quite possible, and is the

legitimate aim of data analysis in scholarly and scientific reporting.
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Pre-sample and post-sample probabilities are often closely related to each

other, requiring the same, or nearly the same calculations. This is especially

likely to be true when we have a large i.i.d. sample and a well-behaved model.

This is one reason why the distinction between pre- and post-sample prob-

ability hardly ever enters the discussion of results in natural science papers.

But in economics, we usually have so many models and parameters potentially

available to explain a given data set that expecting “large” sample distribution

theory to apply is unrealistic, unless we artificially restrict formal analysis to a

small set of models with short lists of parameters. Econometric analysis gener-

ally does make such deliberate artificial restrictions. Applied econometricians

and users of their analyses understand this as a practical matter and discount

the formal probability statements emerging from econometric analyses accord-

ingly. If the discounting is done well, the result need not be badly mistaken

decisions, but if the formal probability statements themselves can make econo-

metricians look foolish or hypocritical. It would be better if econometricians

were trained from the start to think formally about the boundaries between

objective and subjective components of inference.

In this paper, we are not going to expand further on these broad philosoph-

ical points. Instead we are going to consider a series of examples in which a

Bayesian approach is needed for clear thinking about inference and provides

insights not easily available from standard approaches.

2. Possibly Non-Stationary Time Series

2.1. Why Bayesian and Mainstream Approaches Differ Here. Sample

information about variation at frequencies with wavelength in the neighbor-

hood of T in a sample of size T is inherently weak—only about one instance

of a cycle associated with such a wavelength can have been observed. We

cannot expect that sample information will dominate prior beliefs about such

variation, whether those beliefs are formulated explicitly or enter the analy-

sis through the back door in the form of conventional modeling assumptions.

Bayesian approaches that make the role of prior information explicit are there-

fore in conflict with mainstream approaches that attempt to provide appar-

ently objective rules for arriving at conclusions about low-frequency behavior.

Because mainstream approaches do not use probability to keep track of

the role of non-sample information in determining conclusions about low fre-

quency behavior, they can lead to unreasonable procedures or to unreasonable

claims of precision in estimates or forecasts. When forecasting or analysis of

behavior at low frequencies is the center of interest in a study, good research
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practice should insist on modeling so that the full range of a priori plausible

low-frequency behavior is allowed for. Of course this is likely to lead to the

conclusion that the data do not resolve all the important uncertainty, so that

the model’s implied probability bands will (accurately) appear wide and will

be sensitive to variations in auxiliary assumptions or (if explicitly Bayesian

methods are used) to variations in the prior.

But mainstream approaches instead tend to lead to an attempt to find

a model that is both simple and “acceptable”—not rejected by the data—

and then to the making of probability statements conditional on the truth of

that model. Parameters are estimated, and ones that appear “insignificant”,

at least if there are many of them, are set to zero. Models are evaluated,

and the one that fits best, or best balances fit against parsimony, is chosen.

When applied to the problem of modeling low frequency behavior, this way

of proceeding is likely to lead to choice of some single representation of trend

behavior, with only a few, relatively sharply estimated, free parameters. Yet

because the data are weakly informative, there are likely to be other models

of trend that fit nearly as well but imply very different conclusions about

out-of-sample low frequency behavior.

The Bayesian remedy for this problem is easy to describe. It requires, for

decision-making, exploring a range of possible models of low frequency behav-

ior and weighting together the results from them on the basis of their ability to

fit the data and their a priori plausibility. The exact weights of course depend

on a prior distribution over the models, and in scientific reporting the aim will

be to report conclusions in such a way that decision-makers with differing pri-

ors find the report useful. Where this is feasible, the ideal procedure is simply

to report the likelihood across models as well as model parameters.

Good mainstream econometric practice can, by reporting all models tried

that fit reasonably well, together with measures of their fit, and by retaining

“insignificant” parameters when they are important to substantive conclusions,

give an accurate picture of the shape of the likelihood function.

Often, though, “reporting the likelihood” is not feasible, because there are

too many parameters or (equivalently, since choice among models is estimation

of a discrete parameter) too many models. Here the Bayesian approach will

involve integrating out parameters that are not of central interest. Doing this

requires use of a prior, however. Unlike reporting the likelihood, which pro-

duces information usable by people with varying priors, reporting a marginal-

ized likelihood or marginalized posterior may not be helpful to people whose

priors do not match the prior used in performing the integration (even if the
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likelihood itself has been integrated, implying a flat prior). Good reporting,

then, will require doing a good job of choosing one or more priors that come

close to the beliefs of many readers of the report. Reporting marginal poste-

riors under a range of priors can be thought of as describing the likelihood by

reporting values of linear functionals of it rather than its values at points.

To this point we have simply applied to the context of modeling nonsta-

tionary data general principles concerning the difference between pre-sample

and post-sample forms of inference. But there are some specific ways in which

“classical” approaches to inference either lead us astray or hide important

problems from view.

2.2. Bias Toward Stationarity. In a classic paper in econometric theory,

Hurwicz (1950) showed that least squares estimates of ρ in the model

y(t) = ρy(t − 1) + ε(t)(1)

ε(t)| {y(s), s < t} ∼ N(0, σ2)

is biased toward zero. I think most people interpret this result to mean that,

having seen in a given sample the least squares estimate ρ̂, we should tend to

believe, because of the bias toward zero in this estimator, that probably the

true value of ρ is greater than ρ̂, i.e. that in thinking about the implications of

the data for ρ we need to “correct” the biased estimator for its bias. As Sims

and Uhlig (1991) showed, this is not true, unless one started, before seeing

the data, with strong prior beliefs that ρ values near 1 are more likely than

smaller ρ values. The reason is that the bias is offset by another effect: ρ̂ has

smaller variance for larger ρ’s, a fact that by itself would lead us to conclude

that, having seen the sample data, the true ρ is probably below ρ̂.

In this context, then, the presample probability approach gives us a mislead-

ing conclusion. But though bias in this model does not have the implications

one might expect, there is a serious problem with naive use of least squares

estimates in more complex autoregressive time series models, and classical

asymptotic theory gives us misleading answers about it.

2.3. Implausible Forecasting Power in Initial Conditions. In a model

with a constant term as well, or worse, with a constant and a linear trend term,

the chance of a sample from a nonstationary or near-nonstationary process

imitating a stationary process is higher, and also the chance of explaining

a lot of variation as emerging deterministically from initial conditions rises.

When this happens, the results usually do not make sense. This situation is

reflected in the drastically increased (presample) bias when constant terms or
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Figure 1. CDF’s of OLS ρ̂

when ρ = 1

constants with trends are added to the model, which is illustrated in the simple

Monte Carlo results displayed in Figure 1. But from a Bayesian perspective,

the problem can be seen as the implicit use, in relying on OLS estimates, of a

prior whose implications will in most applications be unreasonable.

The nature of the problem can be seen from analysis of the model that adds

a constant term to (1),

y(t) = c + ρy(t− 1) + ε(t) .(2)

This model can be reparameterized as

y(t) = (1 − ρ)C + ρy(t− 1) + ε(t) .(3)

If |ρ| 6= 1, the term C in (3) is the unconditional mean of y. When we

confront any particular sample for t = 1, . . . , T , this model will separate the

sample’s observed variation into two components: a deterministic component,

predictable from data up to time t = 0, and an unpredictable component. The

predictable component has the form

ȳ(t) = (y(0) − C)ρt + C .(4)
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Figure 2. Initial Conditions Rogues’ Gallery

Note: Rougher lines are Monte Carlo data. Smoother curved lines are deter-
ministic components. Horizontal lines are 95% probability bands around the
unconditional mean.

In the case where the true value of c is zero and the true value of ρ is one, the

OLS estimates (ĉ, ρ̂) of (c, ρ) = (0, 1) are consistent. But Ĉ = ĉ/(1− ρ̂) blows

up as T → ∞, because ρ → 1 faster than c → 0. This has the consequence

that, even restricting ourselves to samples in which |ρ̂| < 1, the proportion

of sample variance attributed by the estimated model to the predictable com-

ponent does not converge to zero, but rather to a nontrivial (and fat-tailed)

limiting distribution. In other words, the ratio of the sum over the sample of

ȳ(t)2 (as computed from (ĉ, ρ̂)) to the sum over the sample of y(t)2 does not

converge to zero as T → ∞, but instead tends to wander randomly.

Looking at Figure 2, we see plots of 16 extreme cases, out of 100 random

draws generated from (2) with y(0) ∼ N(0, 100σ2) ,ρ = 1, for the estimated

amount of sample variance explained by the deterministic transient ȳ(0). Note

that in all of these cases the initial value of y(0) is outside the two-standard-

error band about C implied by the OLS estimates. Clearly the OLS fit is

“explaining” linear trend and initial curvature observed in these sample paths

as predictable from initial conditions.
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The sample size in each plot in Figure 2 is 100, but the character of the plots

is independent of sample size. This is a consequence of the scale invariance

of Brownian motion. That is, it is well known that whether our sample of

this discrete time random walk is of size 100 or 10,000, if we plot all the

points on a graph of a given absolute width, and adjust the vertical scale to

accommodate the observed range of variation in the data, the plot will look

much the same, since its behavior will be to a close approximation that of

a continuous time Brownian motion. Suppose we index the observations by

their position s = t/T on (0,1) when rescaled so the whole sample fits in the

unit interval. Suppose further that we scale the data so that the final y in the

scaled data y∗(T ) = y(T )
/√

T has variance 1. If we reparameterize (2) by

setting δ = 1/T , γ = cδ, φ = ρ − 1/δ, it becomes

y∗(s + δ)− y∗(s) = δφ · (y∗(s) − C
√

δ) +
√

δε(t) .(5)

Equation (5) is easily recognized as the standard discrete approximation,using

small time interval δ, to the continuous time (Ohrnstein-Uhlenbeck) stochastic

differential equation

dy∗(t) = φ · (y∗(s)− C
√

δ) dt + dW (t) .(6)

But in the limit as T → ∞, y∗ is just a Brownian motion on (0,1). We

know that we cannot consistently estimate the drift parameters of a stochastic

differential equation from a finite span of data. So we expect that for large T we

will have some limiting distribution for estimates of φ and C
√

δ. The limiting

distribution for estimates of φ implies a limiting distribution for estimates of

(1 − ρ)/T = φ, which is a standard result. But what interests us here is that

the portion of the sample variation attributed to a deterministic component

will also tend to a non-zero limiting distribution.

Of course the situation is quite different, as T → ∞, when the data come

from (2) with c 6= 0 or ρ 6= 1. With c 6= 0 and ρ = 1, the data contain a

linear trend component that dominates the variation. Our exercise of rescaling

the data leads then, as T → ∞, to data that looks just like a straight line,

diagonally between corners of the graph. That is, in large samples the linear

trend generated by c 6= 0 dominates the variation. Not surprisingly then,

the position of the trend line on the scaled graph is well estimated in large

samples in this case. If |ρ| < 1, then regardless of whether c is zero or not

the estimated proportion of sample variance attributable to the deterministic

component goes to zero as T → ∞.

In applied work in economics, we do not know the values of c or ρ, of course,

but we do often expect there to be a real possibility of c near enough to 0 and
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ρ near enough to 1 that the kind of behavior of OLS estimates displayed in

Figure 2, in which they attribute unrealistically large proportions of variation

to deterministic components, is a concern.

It may be obvious why in practice this is “a concern”, but to discuss the rea-

sons formally we have to bring in prior beliefs and loss functions—consideration

of what range of parameter values for the model are the center of interest in

most economic applications, and what the consequences are of various kinds

of error. Use of OLS estimates and the corresponding measures of uncer-

tainty (standard errors, t-statistics, etc.) amounts to using a flat prior over

(c, ρ). Such a prior is not flat over (C, ρ), but instead has density element

|1 − ρ| dC dρ. That is, in (C, ρ) space it puts very low prior probability on

the region where ρ
.
= 1. There is therefore an argument for simply premulti-

plying the usual conditional likelihood function by 1/ |1 − ρ|. However, when

as here different versions of a “flat prior” make a difference to inference, they

are really only useful as a danger signal. The justification for using flat priors

is either that they constitute a neutral reporting device or that, because often

sample information dominates the prior, they may provide a good approxi-

mation to the posterior distribution for any reasonable prior. Here neither of

these conditions is likely to hold. It would be a mistake to approach this prob-

lem by trying to refine the choice of flat prior, seeking a somehow “correct”

representation of ignorance.

There may be applications in which the flat prior on (c, ρ) is a reasonable

choice. We may believe that initial conditions at the start of the sample are

unrepresentative of the steady state behavior of the model. The start date

of the model might for example be known to be the date of a major histor-

ical break, like the end of a war. Barro and Sala-I-Martin (1995) (Chapter

11) display a number of cases where initial conditions are reasonably taken

not to be drawn from the steady-state distribution of the process, so that a

deterministic component is important.1

But we may instead believe that the sample period displays behavior that

is representative of what we can expect over a period of similar length in the

future. In that case we may be primarily interested in long term (meaning,

say, over periods T +1 to T +T ) forecasts for data after the end of the sample

period. Results from samples like those displayed in the row and column po-

sitions (3,2), (3,4), (4,2) in Figure 2 are then particularly problematic. They

show the initial conditions to be far outside a two-standard-error band about

the estimated unconditional mean, but the terminal values y(T ) close to those

1Such cases lead to what they call “σ-convergence”.
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bands. Because of the nature of the exponential decay pattern imposed by

the model, projections out of sample based on these estimates will show de-

terministic behavior qualitatively different from what has prevailed during the

sample. The slope of the “trend line” will change, because the model implies

that the data, over the time period T + 1, . . . , 2T , will be closer to its uncon-

ditional mean and thus less strongly subject to mean-reversion pressures. Of

course this could be the way the future data will actually behave, but believing

this requires a firm commitment to the restrictions on long-run behavior im-

plicit in the parametric model. In accepting this prediction, we are agreeing to

use a pattern in the observable data to predict a different pattern of variation,

never yet observed, in the future data.

There can be no universally applicable formula for proceeding in this situ-

ation. One possibility, emphasized in an earlier paper of mine (Sims 1989), is

that we believe that a wide range of complicated mechanisms generating pre-

dictable low frequency variation are possible. What looks like a positive linear

trend might just be a rising segment of a sine wave with wavelength exceeding

the sample size, or of a second or third order polynomial whose higher-order

terms start having strong effect only for t >> T . In this case the proper course

is to recognize this range of uncertainty in the parameterization. The result

will be a model in which, despite a good fit to low frequency variation in the

sample, uncertainty about long run forecasts will be estimated as high.

Another possibility, though, is that we believe we can use the existing sam-

ple to make long run forecasts, because we think it unlikely that there are

such complicated components of variation at low frequencies. In this case, we

believe that OLS estimates that look like most of those in Figure 2 are a priori

implausible, and we need to use estimation methods that reflect this belief.

One way to accomplish this is to use priors favoring pure unit-root low-

frequency behavior. An extreme version of this strategy is to work with dif-

ferenced data. A less extreme version uses a reference prior or dummy ob-

servations to push more gently in this direction. The well-known Minnesota

prior for vector autoregressions (Litterman 1983) (Doan 1992, Chapter 8) has

this form, as does the prior suggested by Sims and Zha (1998) and the dummy

observation approach in Sims (1993). A pure unit root generates forecasts that

do not revert to a mean. It implies low-frequency behavior that will be simi-

lar in form within and outside the sample period. By pushing low-frequency

variation toward pure unit root behavior, we tend to prevent it from showing

oscillations of period close to T .
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But this method has its limits. In large models, especially with high-

frequency data (and correspondingly many lagged variables) it may require

unreasonably strong emphasis on unit-root-like behavior in order to eliminate

oscillatory low frequency deterministic components. Another possibility, not

yet extensively tested in practice, would be to penalize unreasonable deter-

ministic low frequency components directly in the prior. For example, one

could include as a factor in the prior p.d.f. a p.d.f. for the ratio of the sample

variance of the Fourier component at frequency 2π/T of ∆ȳ(t) to the variance

of ε(t).

There are open research questions here, and few well tested procedures

known to work well in a wide variety of applications. More research is needed—

but on how to formulate reasonable reference priors for these models, not on

how to construct asymptotic theory for nested sequences of hypothesis tests

that seem to allow us to avoid modeling uncertainty about low frequency com-

ponents.

3. Dynamic, Possibly Non-Stationary, Panel Data Models

Here we consider models whose simplest form is

yi(t) = ci + ρyi(t − 1) + εi(t) , i = 1, . . . , N, t = 1, . . . , T.(7)

Often in such models N is large relative to T . The common practice in time

series inference of using as the likelihood the p.d.f. of the data conditional

on initial conditions and on the constant term therefore runs into difficulty.

Here there are N initial conditions yi(0), and N constant terms ci, one of each

for each i. The amount of data does not grow relative to the number of free

parameters, so they cannot be estimated consistently as N → ∞. This makes

inference dependent, even in large samples, on the distribution of the ci. For

a Bayesian approach, the fact that the ci have a distribution and cannot be

estimated consistently raises no special difficulties. There is no distinction in

this approach between random ci and “parametric” ci. In approaches based on

pre-sample probability, by contrast, treating the ci as random seems to require

a different model (“random effects”), whose relation to the “fixed effect” model

can seem a philosophical puzzle.2

2The classical distribution theory for the fixed effect model describes the randomness in
estimators as repeated samples are generated by drawing ε vectors with the values of ci

held fixed. For the random effects models it describes randomness in estimators as repeated
samples are generated by drawing ε vectors and c vectors. Though these two approaches
usually are used to arrive at different estimators, each in fact implies a different distribution
for any single estimator. That is, there is a random effects distribution theory for the fixed
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If the dynamic model is known to be stationary (|ρ| < 1), with the initial

conditions drawn randomly from the the unconditional distribution, then

yi(0) ∼ N

(
ci

1 − ρ
,

σ2

(1 − ρ2)

)
,(8)

which we can combine with the usual p.d.f. conditional on all the yi(0)’s to con-

struct an unconditional p.d.f. for the sample. Maximum likelihood estimation

with this likelihood function will be consistent as N → ∞.

But if instead it is possible that |ρ| ≥ 1, the distribution of yi(0) cannot

be determined automatically by the parameters of the dynamic model. Yet

the selection rule or historical mechanism that produces whatever distribution

of yi(0) we actually face is critical to our inference. Once we have recognized

the importance of application-specific thinking about the distribution of initial

conditions for the non-stationary case, we must also acknowledge that it should

affect inference for any case where a root R of the dynamic model may be

expected to have 1/(1−R) of the same order of magnitude as T , which includes

most economic applications with relatively short panels. When the dynamics

of the model work so slowly that the effects of initial conditions do not die

away within the sample period, there is generally good reason to doubt that

the dynamic mechanism has been in place long enough, and uniformly enough

across i, so that we can assume yi(0), i = 1, . . . , N to be drawn randomly from

the implied stationary unconditional distribution for yi(0).

It is well known that, because it makes the number of “parameters” in-

crease with N , using the likelihood function conditional on all the initial con-

ditions leads to bad results. This approach leads to MLE’s that are OLS

estimates of (7) as a stacked single equation containing the N + 1 parameters

{ci, i = 1, . . . , N, ρ}. These estimates are not consistent as N → ∞ with T

fixed. An alternative that is often suggested is to work with the differenced

data. If |ρ| ≤ 1, the distribution of ∆yi(t), t = 1, ..., T is the same across i and

a function only of σ2 and ρ. Therefore maximum likelihood estimation based

on the distribution of the differenced data is consistent under these assump-

tions. Lancaster (1997) points out that this approach emerges from Bayesian

analysis under an assumption that |ρ| < 1, in the limit as the prior on the ci

becomes flat. (This Bayesian justification does not apply to the case where

|ρ| = 1, however, where the method is nonetheless consistent.)

effects estimator and vice versa. There is no logical inconsistency in this situation, but if one
makes the mistake of interpreting classical distribution theory as characterizing uncertainty
about parameters given the data, the existence of two distributions for a single estimator of
a single parameter appears paradoxical.
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Using the p.d.f. of the differenced data amounts to deliberately ignoring

sample information, however, which will reduce the accuracy of our inference

unless we are sure the information being ignored is unrelated to the parameters

we are trying to estimate.3 If we are confident that (ci, yi(0)) pairs are drawn

from a common distribution, independent across i and independent of the

εi, then there is information in the initial y’s that is wasted when we use

differenced data.

A simple approach, which one might want to modify in practice to reflect

application-specific prior information, is to postulate

(ci, yi(0)) ∼ N

([
µc

µy

]
,

[
σcc σcy

σcy σyy

])
,(9)

with the parameters of this distribution treated as unknown. This uncondi-

tional joint c.d.f. can then be combined with the conventional conditional

c.d.f. for {yi(t), t = 1, . . . , T, i = 1, . . . , N} conditional on the initial yi(0)’s

and ci’s, to produce a likelihood function. All the usual conditions to generate

good asymptotic properties for maximum likelihood estimates are met here as

N → ∞.

Note that the setup in (9) is less restrictive than that in (8). The specifica-

tion in (8) gives a distribution for yi(0) conditional on ρ, σ2, and ci. If we use

it to generate a likelihood, we are implicitly assuming that none of these pa-

rameters affect the marginal distribution of ci. If we complete the specification

by postulating ci ∼ N(µc, σcc), we have a special case of (9) in which

σyc

σcc
=

1

1 − ρ
(10)

σyy −
σ2

yc

σcc
=

σ2

1 − ρ2
.(11)

These two restrictions reduce the number of free parameters by two, but do not

contradict the more general specification (9). The more general specification

gives consistent estimates as N → ∞ regardless of the size of |ρ|.
Of course where one is confident of the assumption of stationarity, it is better

to use the restrictions embodied in (8), but in many economic applications it

will be appealing to have a specification that does not prejudge the question

of stationarity.

3Ignoring observed data by constructing a likelihood for a subset of or a function of the
data generally gives us a different, less informative, likelihood function than we would get
from all the data. But if the conditional distribution of the omitted data given the data
retained does not depend on the parameters we are estimating, the likelihood for the reduced
data set is the same as for the full data set.
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No claim of great originality or wide usefulness is being made here for the

specification in (9). Similar ideas have been put forth before. The panel data

context, because it is the home of the random effects specification, has long

been one where classically trained econometricians have had less inhibition

about crossing the line between “parameters” and “random disturbances”.

Heckman (1981) proposes a very similar approach, and Keane and Wolpin

(1997) a somewhat similar approach, both in the context of more complicated

models where implementation is not as straightforward.

Lancaster (1997) has put forward a different Bayesian proposal. He looks

for a way to reparameterize the model, redefining the individual effects so that

a flat prior on them does not lead to inconsistent ML estimates. This leads

him to different priors when likelihood is the unconditional p.d.f. for the data

imposing stationarity and when likelihood is conditional on initial conditions.

In the latter case he finds that this leads to an implicit prior on the ci in the

original parameterization that imposes a reasonable pattern of dependence

between ci and yi(0). His specification does enforce an absence of dependence

between ci and yi(0) when ρ = 1. While this will sometimes be reasonable, it

is restrictive and may sometimes distort conclusions. For example, if we are

studying growth of income yi(t) in a sample of countries i where the rich ones

are rich because they have long had, and still have, high growth rates, the ci

and yi(0) in the sample will be positively correlated.

Applying the ideas in this section to more widely useful models in which

right-hand-side variables other than yi(t− 1) appear raises considerable com-

plications. A straightforward approach is to collect all variables appearing in

the model into a single endogenous variable vector yi, and then re-interpret (7)

and (9), making ci a column and ρ a square matrix. Of course this converts

what started as a single-equation modeling problem into a multiple-equation

problem, but at least thinking about what such a complete system would look

like is essential to any reasonable approach.

Another approach, closer to that suggested by Heckman (1981), preserves

the single equation framework under an assumption of strict exogeneity. We

generalize (7) to

yi(t) = ρyi(t − 1) + Xi(t)βi + εi(t) ,(12)

in which we assume Xi(t) independent of εj(t) for all i, j, s, t in addition to the

usual assumption that ε(t) is independent of yj(s) for all j 6= i with s ≤ t and

for all s < t with j = i. Now we need to consider possible dependence not just

between a pair (yi(0), ci), but among the vector {Xi(s), βi, yi(0), s = 1, . . . , T}.
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It is still possible here to follow basically the same strategy, though: postulate

a joint normal unconditional distribution for this vector and combine it with

the conditional distribution to form a likelihood function. One approach is to

formulate the distribution as conditional on the X process, so that it takes the

form [
yi(0)

βi

]∣∣∣∣ {Xi(s), s = 1, . . . , T} ∼ N(ΓXi, Σby) ,(13)

where Xi is the T -row matrix formed by stacking {Xi(t), t = 1, . . . , T}. De-

spite the fact that the model specification implies that yi(t) depends only on

Xi(s) for s ≤ t, we need to allow for dependence of the initial y on future X’s

because they are related to the unobservable Xi(s) for s ≤ 0. If N >> T , this

should be a feasible, albeit not easy, approach to estimation.

4. Kernel Estimates for Nonlinear Regression

Kernel methods for estimating nonlinear regressions are generally used when

there is a large amount of data. They represent an attempt to represent a priori

uncertainty more realistically than is possible in models with a small number

of unknown parameters, and as a result they lead to implicitly or explicitly

expanding the parameter space to the point where the degrees of freedom in

the data and in the model are of similar orders of magnitude.

Kernel estimates of nonlinear regression functions do not emerge directly

from any Bayesian approach. They do, though, emerge as close approximations

to Bayesian methods under certain conditions. Those conditions, and the

nature of the deviation between ordinary kernel methods and their Bayesian

counterparts, show limitations and pitfalls of kernel methods. The Bayesian

methods are interesting in their own right. They allow a distribution theory

that connects assumptions about small sample distributions to uncertainty

about results in particular finite samples, freeing the user from the arcane

“order-N q/p” kernel-method asymptotics whose implications in actual finite

samples often seem mysterious.

The model we are considering here is

yi = c + f(xi) + εi ,(14)

where the εi are i.i.d. with variance σ2, mean 0, independent of one another

and of all values of xj. We do not know the form of f , but have a hope

of estimating it because we expect eventually to see a well dispersed set of

xi’s and we believe that f satisfies some smoothness assumptions. A Bayesian

formalization of these ideas makes f a zero-mean stochastic process on x-space
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and c a random variable with a spread-out distribution. Though these ideas

generalize, we consider here only the case of one-dimensional real xi ∈ R.

Computations are simple if we postulate joint normality for c, the f(·) process

and the ε’s. It is natural to postulate that c ∼ N(0, ν2), with ν2 large, and

that f follows a Gaussian zero-mean stationary process, with the covariances

of f ’s at different x’s given by

cov(f(x1), f(x2)) = Rf (|(x1 − x2)|)(15)

for some autocovariance function Rf . We can vary the degree of smoothness

we assume for f (including, for example, how many derivatives its sample

paths have) by varying the form of Rf .

The distribution of the value ȳ(x∗) = c + f(x∗) of the regression function

c+f at some arbitrary point x∗, given observations of (yi, xi), i = 1, . . . , N , is

then normal, with mean a linear function of the observed y’s. To be explicit,

(14) and (15) together imply

cov ({yi, i = 1, . . . , N}) = Ω = ν2 1
N×N

+
[
Rf (xi − xj)

]
N×N

+ σ2I(16)

and

cov ({yi, i = 1, . . . , N} , ȳ(x∗)) = Ψ(x∗) = ν2 1
N×1

+
[
Rf (xi − x∗)

]N

i=1
,(17)

where 1 is notation for a matrix filled with one’s. The distribution of ȳ(x∗) is

then found by the usual application of projection formulas for Normal linear

regression, yielding

E [ȳ(x∗)] = [y1, . . . , yN ] · Ω−1Ψ(x∗)(18)

var [ȳ(x∗)] = Rf (0) − Ψ(x∗)′Ω−1Ψ(x∗) .(19)

A kernel estimate with kernel k, on the other hand, estimates ȳ(x∗) as

ŷk(x
∗) =

1

N

N∑
i=1

yik(x∗ − xi) = [y1, . . . , yN ] · [k(x∗ − xi)
]N

i=1
.(20)

Comparing (18) with (20) we see that the Bayesian estimate is exactly a kernel

estimate only under restrictive special assumptions. Generally, the presence

of a non-diagonal Ω matrix in (18) makes the way an observation (yi, xi) is

weighted in estimating ȳ(x∗) depend not only on its distance from x∗ (as in a

kernel estimate), but also on how densely the region around xi is populated

with observations. This makes sense, and reflects how kernel methods are

applied in practice. Often kernel estimates are truncated or otherwise modified
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in sparsely populated regions of the xi space, with the aim of avoiding spurious

fluctuations in the estimates.

There are a variety of classical approaches to adapting the kernel to local

regions of x space (Härdle 1990, section 5.3). However, these methods empha-

size mainly adapting bandwidth locally to the estimated shape of f , whereas

the Bayesian approach changes the shape of the implicit kernel as well as its

bandwidth, and does so in response to data density, not the estimated shape

of f . A Bayesian method that adapted to local properties of f would emerge

if cov(f(xi), f(xj)) were itself modeled as a stochastic process.

There are conditions, though, under which the Bayesian estimates are well

approximated as kernel estimates, even when Ω is far from being diagonal. If

the xi values are equally spaced and sorted in ascending order, then Ω is a

Toeplitz form (i.e. constant down diagonals), and to a good approximation,

at least for i not near 1 or N , we can write (18) as

E [ȳ(x∗)] = ŷk(x
∗)(21)

for

k = N · ((σ2δ + Rf + ν2)−1 ∗ (Rf + ν2) − b
)

,(22)

where b is a constant term that adjusts the integral of the kernel to 1.4 In (22)

δ is the δ-function, equal to zero except when its argument is zero, the “∗”
refers to convolution5 and the inverse is an inverse under convolution. Thus

kernel estimates are justifiable as close to posterior means when the data are

evenly dispersed and we are estimating ȳ(x∗) for x∗ not near the boundary

of the x-space. These formulas allow us to see how beliefs about signal-to-

noise ratio (the relative size of Rf and σ2) and about the smoothness of the f

we are estimating are connected to the choice of kernel shape. Note that for

σ2 >> Rf , we have k
.
= Nσ−2Rf − b, so that the kernel shape matches Rf .

However it is not generally true that the kernel shape mimics that of the Rf

that characterizes our prior beliefs about smoothness.

Samples in economics often do show unevenly dispersed x values. Many

applications to cross section data involve x’s like firm size or individual income,

which have distributions with notoriously fat tails, for example. Bayesian

methods allow us to account explicitly, and automatically, for variations in

the density of sampling across x-space. Understanding of their connection to

4The effect of allowing for a large-prior-variance c in (14) is concentrated on making the
integral of the kernel emerge as one.

5In discrete time, the convolution of a function h with a function g is the new function
h ∗ g(t) =

∑
s h(s)g(t − s).
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Figure 3. Weighting function for x∗ = .1

Nearest xi: .0579, .0648, .1365, .1389

kernel estimation methods gives insight into why it generally makes sense to

adapt kernel shape to the density of sampling in a given region—if only by

making special adjustments at the boundaries of the x-space.

To illustrate these points we show how they apply to a simple example, in

which {xi, i = 1, . . . , 100} are a random sample from a uniform distribution

on (0, 1) and our model for f makes Rf (t) = max(1 − |t| /.12, 0). We assume

σ = .17, making the observational error quite small relative to the variation

in f , and set ν = 10.6 In Figure 3 we see weights that reflect the fact that

x∗ = .1 happens to fall in the biggest gap in the xi data in this random sample.

The gap is apparent in the list of 4 adjacent xi’s given below the figure. In

contrast, Figure 4 shows a case where the sample happens to contain many

xi’s extremely close to x∗. In this case there is no need to rely on distant xi’s.

Simply averaging the ones that happen to fall nearly on top of x∗ is the best

option. The implied kernel also tends to stretch out at the boundaries of the

sample, as is illustrated in Figure 5, which is for x∗=1.

The Bayesian approach to nonlinear regression described here is not likely to

replace other approaches. If Rf is chosen purely with an eye toward reflecting

reasonable prior beliefs about the shape of f , the result can be burdensome

computations when the sample size is large. The Ω matrix is of order N ×N ,

and if it has no special structure the computation of Ω−1Ψ(x∗) is much more

6The effects of ν on the implicit kernels we plot below are essentially invisible. The effects
would not be invisible for estimated f values if the true c happened to be large.
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work than simply applying an arbitrarily chosen kernel function. The amount

of work can be held down by, as in the example we have discussed, keeping the

support of Rf bounded, which makes Ω a constant matrix plus a matrix whose

non-zero elements are concentrated near the diagonal. It can be held down

even further by special assumptions on Rf . Grace Wahba, in a sustained

program of theoretical and applied research (Wahba 1990, Luo and Wahba

1997), has developed “smoothing spline” methods. In their specialization to
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the type of problem discussed in this section, they can be derived from the

assumption that the p’th derivative (p ≥ 0) of the f process is a Brownian

motion. In the example we have considered, our assumptions imply

f(x) = W (x) − W (x− .12) ,(23)

where W is a Brownian motion. Thus the special computational methods for

smoothing splines do not apply to the example, though it can easily be verified

that the estimated f in the example will be a continuous sequence of linear

line segments, and thus a spline.7 Generally, the result of the Bayesian method

is a spline whenever Rf is a spline, though it will not be a smoothing spline

per se for any choice of a stationary model for f .

5. Conclusion

The examples we have considered are all situations where realistic inference

must confront the fact that the complexity of our ignorance is of at least the

same order of magnitude as the information available in the data. Assumptions

and beliefs from outside the data unavoidably shape our inferences in such

situations. Formalizing the process by which these assumptions and beliefs

enter inference is essential to allowing them to be discussed objectively in

scientific discourse. In these examples, approaching inference from a likelihood

or Bayesian perspective suggests some new interpretations or methods, but

even where it only gives us new ways to think about standard methods such

an approach will be likely to increase the objectivity and practical usefulness

of our analysis by bringing our probability statements more into line with

common sense.
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