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Types of “assumption-free” inference

• A simple procedure or set of statistics is proposed. It is shown to have “good
properties” under “very weak” assumptions about the model.

– OLS, IV, GMM, differencing out individual effects

• An infinite-dimensional parameter space or a nuisance-parameter vector that
grows with sample size is explicit. A procedure that explicitly accounts for the
infinite-dimensionality is proposed.

– Kernel regression, frequency-domain time series models.

Are these approaches inherently non-Bayesian?

• Certainly the idea that we would prefer that inference not depend on uncertain
or arbitrary assumptions is reasonable from any perspective.

• Some Bayesians have argued that insistence on using all aspects of the observed
data is an important part of the Bayesian perspective on inference, but I don’t
agree.

– Simple procedures that “work” will be used. Bayesians might want to use
them for the same reason non-Bayesians might.
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– Spuriously appealing simple procedures should not be used. Bayesian anal-
ysis of simple procedures may help us identify procedures, or combinations
of procedures and types of samples, in which the simple procedures break
down.

What are micro-founded (i.e. Bayesian) versions of these approaches?

• Limited-information Bayesian inference based on asymptotics. (Yum-Keung Kwan).
Convert frequentist asymptotics to posteriors conditional on the statistics used to
form the estimator and its asymptotic variance.

• Bayesian sieves. Postulate a specific prior distribution over an infinite-dimensional
parameter space and proceed. Usually this has the form of a countable union of
finite-dimensional parameter spaces with probabilities over the dimension.

• Limited-information Bayesian inference based on entropy. “Conservative” infer-
ence based on the idea that assumptions that imply the data reduce entropy
slowly are weaker than assumptions that imply that in this sense information
accumulates faster. (Jaynes, Zellner, Jae-young Kim)

Explicit infinite-dimensionality

• Uncertain lag length; polynomial regression with degree uncertain; autoregres-
sive estimation of spectral density with uncertain lag length; random effects ap-
proaches to panel data.

• These appear to be restrictive. Insisting that a regression function is a finite-order
polynomial with probability one seems more restrictive than just insisting that,
e.g., there is some (unknown) uniform bound on some of its derivatives.

• That’s not true, though. Every Borel measure on a complete, separable metric
space puts probability one on a countable union of compact sets, and in an infinite-
dimensional linear space, compact sets are all topologically small in the same sense
that finite-dimensional subspaces are.

• Frequentist procedures that provide confidence sets face the same need to restrict
attention to small subspaces.
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• Example: `2, the space of square summable sequences {bi}. Many time series
setups (most frequency domain procedures, e.g.) require that there is some A > 0
(which may not be known) such that A |bi| iq is bounded for some particular q ≥ 1.
The set of all such b’s is a countable union of compact sets. Compact subsets of
an infinite dimensional linear space are topologically equivalent to subsets of Rk.
So the union over T of all b’s such that bi = 0 for i > T is the same “size” as the
subsets satisfying this rate of convergence criterion.

• Time series econometricians long ago got over the idea that frequency domain
estimation, which makes only smoothness assumptions on spectral densities, is
any more general than time-domain estimation with finite parametrization. In
fact, the preferred way to estimate a spectral density is usually to fit an AR or
ARMA model.

• It’s a bit of a mystery why non-time-series econometricians still habitually suggest
that kernel estimates make fewer assumptions than (adaptive) parametric models.

No Lebesgue measure

• Rn is a complete, separable metric space. But Lebesgue measure provides a
topologically-grounded definition of a big set as an alternative to “category”.
Lebesgue measure is Borel and translation-invariant.

• In an ∞-dim space S, for any Borel measure µ on S, there is an x ∈ S such that
for some measurable A ⊂ S, µ(A) > 0 and µ(A + x) = 0. I.e., not only is there
no translation-invariant measure, translation can always take a measure into one
that is mutually discontinuous with it.

Is this a problem?

• Not a special problem for Bayesians. Any attempt to produce confidence regions
runs into it.

• We can never relax about the possibility that a reasonable-looking prior is actu-
ally dogmatic about something important. In Rn, priors equivalent to Lebesgue
measure all agree on the zero-probability sets and in this sense are not dogmatic.
No such safe form of distribution is available in ∞-dimensions.
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Using entropy

• While entropy-reduction has axiomatic foundations, using it as if it came from a
loss function is hazardous. See Bernardo and Smith.

• We may care about some parameters and not others, e.g., so that assumptions
that let us learn rapidly about parameters we don’t care about, while limiting the
rate at which we learn about others, may in fact be conservative.

• One reasonable approach: Make assumptions about model and prior that imply
a joint distribution for the observations and the data that makes the mutual
information between data and parameters as small as possible, subject to some
constraints.

Minimizing mutual information between y and β s.t. a fixed marginal on
y

• This is often easy, and appealing.

• When maximizing the entropy of y | β leads to a well-defined pdf, this solves the
problem.

• E.g. the SNLM, which emerges as maximum entropy given the conditional mean
and variance of y

• The fixed marginal on y is perhaps fairly often reasonable — if we know nothing
about parameters, we often know almost nothing about the distribution of y.

• IV: emerges from the IV moment conditions. Leads to using the LIML likeli-
hood to characterize uncertainty, which makes a lot more sense than treating the
conventional asymptotic distribution for IV itself as if it were correct.

• This approach handles weak instruments automatically.

The Wasserman example

• Why study this very stylized example?

• It originally was meant to show that Bayesian or other likelihood-based meth-
ods run astray in high-dimensional parameter spaces, while a simple, frequentist,
GMM-family estimate worked fine — something that some statisticians and econo-
metricians think is well known, which is probably why Wasserman, a very smart
statistician at CMU, himself ran astray in the example.
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• The model and estimator are a boiled-down version of “propensity score” methods
that are widely used in empirical labor economics.

• The discussion will illustrate all the general points made above.

• For each ω ∈ {1, . . . , B} there is a pair θi, ξi, each of which is in [0, 1]. B is a very
large integer.

• We know ξ() : {1, . . . , B} 7→ (0, 1).

• We do not know θ() : {1, . . . , B} 7→ (0, 1), though it exists. Our inference will
concern this unknown object.

The sample

• For each observation number j = 1, . . . , N , an ωj was drawn randomly from a
uniform distribution over {1, . . . , B}.

• Rj ∈ {0, 1}, P [R = 1 | ξ(ωj), θ(ωj)] = ξ(ωj).

• (From this point on we will use the shorthand notation θj and ξj for θ(ωj) and
ξ(ωj)).

• Yj ∈ {0, 1}, P [Yj = 1 | θj, ξj] = θj

• We observe the triple (ξj, Rj, RjYj).

• We are interested in inference about θ̄ = (1/B)
∑

ω θ(ω)

The setup in words
We have a sample of a zero-1 variable (Yj) with missing observations. We would

like to know the average probability that Y is one, but we can’t simply take sample
averages of the Yj’s, because the probability that a sample value Yj is missing might
vary with θj.

Wasserman’s claims
The pdf of our observations as a function of the unknown parameters {θ(ω), ω ∈ 1, . . . , B}

(and of the known parameters ξ(ω)) is

N∏
j=1

ξ
Rj

j (1− ξj)
1−Rjθ

RjYj

j (1− θj)
(Rj−RjYj) .
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The likelihood function, which varies only with the unknown parameters θ(1, . . . , B),
depends on the known {ξj} sequence only through a scale factor, which does not affect
the likelihood shape. Therefore Bayesian, or any likelihood-based inference, must ignore
the ξj’s. If N << B, most of the θ(ω) values do not appear in the likelihood function.
For all those values of ω that have not appeared in the sample, the posterior mean has
to be the prior mean. The posterior mean for θ̄ must therefore be almost the same as
the prior mean for that quantity.

The robust frequentist approach

• Use the Horwitz-Thompson estimator.

• This just weights all observations (including those for which Y is unobserved,
treating them as zeros) by the inverse of their probability of inclusion in the
sample. That is, set

θ̂ =
1

N

N∑
j=1

RjYj

ξj

.

• It’s easily checked that if Zj = RjYj/ξj, E[Zj] = E[θj]. So θ̂ is unbiased and
strongly consistent.

“Conservative” frequentist confidence intervals

• If we have a lower bound on ξ, we have an upper bound on the variance of θ̂,
which will allow us to create Chebyshev-style conservative confidence intervals for
θ̄, valid even in small samples.

• Obviously we can also create the usual sort of “asymptotically valid” confidence
interval (which may not have approximately correct coverage at any sample size)
by forming the usual sort of t-statistic from the Zj’s,

What about the likelihood principle? The wrong likelihood.

• Doesn’t Wasserman’s argument show that inference about θ̄ that uses the ξj values
violates the likelihood principle?

• Wasserman has actually incorrectly specified the likelihood function. What he
(and we, above) displayed is the correct conditional joint pdf for (Yj, RjYj) |
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{ξj, θj, j = 1, . . . , N}. It is also true that {θ(ω), ξ(ω), ω = 1, . . . , B} can be re-
garded as unknown and known “parameters”, respectively. But the ξj’s are not
the ωj’s. The ξj are realized values of a random variable that is observed. The
likelihood must describe the joint distribution of all observable random variables,
conditional on the unknown parameter values, which here are just {θ(ω)}.

Correcting the likelihood

• So we need to specify the joint distribution of θj, ξj, not just condition on them,
and then, since the θj’s are unobservable random variables, we have to integrate
them out to obtain the conditional distribution of observables given the “param-
eters” {θ(ω)}.

• The probability space is S = {1, . . . , B}. The joint distribution is fully charac-
terized by ξ(ω) and θ(ω). But since the θ(ω) function is unknown, we can’t write
down the pdf of the data, and therefore the likelihood, without filling in this gap.

Ways to fill the gap

• Postulate independence. Then the likelihood, and hence inference about θ() will
not depend on the observed values of ξj, indeed inference can be based on the
sample where Yj is observed, ignoring the censoring.

• However even in this case Wasserman is wrong to say that the form of the like-
lihood implies that the posterior mean for θ(ω) must be the prior mean for all
those values of θ(ω) that do not appear in the sample.

• The prior on θ() in the independence (of ξ) case is a stochastic process on 1, . . . , B.
It can perfectly well be an exchangeable process with uncertain mean. For exam-
ple,

{θ(ω) | ν} ∼ Beta(kν, k(1− ν)), all ω

ν ∼ U(0, 1) .

• With this prior inference is straightforward and the posterior mean of θ̄ will
be very close to the average value of Yj over those observations for which it is
observed.
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• But notice: We at first inadvertently, by extending a reasonable low-dimensional
prior to a high-dimensional space, were dogmatic about exactly what interested
us. We fixed that.

• But we’re still dogmatic about a lot of other stuff — e.g., the difference in the
average of the θ’s over the first half and the last half of the list of θ’s.

• We should probably be modeling our prior on θ(ω) as a stochastic process.

• But it is inevitable that we are in some dimensions dogmatic.

Limited information

• Horwitz-Thompson achieves simplicity — both for calculating the estimator and
for proving a couple of its properties (unbiasedness and consistency) by throwing
away information.

• Throwing away information to achieve simplicity is sometimes a good idea, and
is as usable for Bayesian as for non-Bayesian inference.

• What would Bayesian inference based on Zj = RjYj/ξj, j = 1, . . . , N alone look
like?

• Zj has probability mass concentrated on a known set of points: {0, 1/ξ(ω), ω = 1, . . . , B}.
We don’t know the probabilities of those points for a given draw j conditional on
{θ()}.

Small number of ξ(ω) values

• If the range of the ξ(ω) function is only a few discrete points, within the set of ω
values for which ξj takes on a particular value, there is trivially no dependence of
θj on ξj.

• It therefore makes sense to apply our solution above for the independence case
separately to the k subsamples corresponding to the k values of ξj. The estimated
mean θ’s within each subsample can then be weighted together using the assumed-
known probabilities of the k ξ(ω) values.
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Extension to many ξ(ω) values

• We could break up the range of ξ(ω) into k segments, assume the distribution of
θ(ω) within each such segment is independent of ξ(ω). This obviously is feasible
and will be pretty accurate if the dependence of the distribution of θ | ξ on ξ is
smooth.

• To be more rigorous, we could put probabilities πk over the number of segments,
with each k corresponding to a given list of k segments of (0,1).

• This is a Bayesian sieve, and leads to accurate inference under fairly general
assumptions.

• This approach would work even if there is an uncountable probability space and
we are just given a marginal density g(ξ) for ξ.

Using entropy

• It makes things easier here if we (realistically) suppose that the underlying prob-
ability space is uncountable, rather than {1, . . . , B}.

• Each Zj has an unknown distribution on {0} ∪ [1,∞), but with mean θ̄.

• We can often arrive at conservative Bayesian inference by maximizing entropy of
the data conditional on known moments. Here, the max entropy distribution for
Z will put probability π0(θ̄) on Z = 0 and density π0(θ̄) exp(−λ(θ̄)Z) on Z ≥ 1.

• The max entropy distribution makes
∑

Zj a sufficient statistic. Its posterior mean
will be consistent and respects the a priori known bound θ ∈ [0, 1].

• If we relax the constraint connecting π0 and the height of the continuous pdf at
Z = 1, we get a sample likelihood

αn(1− α)mµne−µ
P

Zi>0(Zi−1) ,

where n is the number of non-zero observations and m the number of zero obser-
vations on Z.

• The bounds on θ place bounds on µ, α.
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• Ignoring the bounds and using a conjugate prior parametrized by γ gives a pos-
terior mean for θ̄ of

θ̂ =
n + 1

n + m + 2
·
(∑

Zi

n
− γ

n

)
,

very close to the Horwitz-Thompson estimator for large n,m.

Admissibility

• Ignoring the bounds makes this estimator — and the Horwitz-Thompson estima-
tor — inadmissible. If θ is near 1, these estimators can have a high probability of
exceeding 1.

• We can truncate them, but this undoes unbiasedness of Horwitz-Thompson.

• One admissible estimator is obtained as the posterior mean of the α, µ model,
accounting for the bounds.

• The draft note shows how that model leads to a posterior that is more diffuse
when there are fewer non-zero Z’s.

• The entropy-maximizing model would not have this property. Its posterior would
depend on

∑
Zj and sample size, but not on the number of non-zero draws.

• Probably, therefore, its posterior is more diffuse for samples with few-non-zero
draws. I haven’t decided yet whether this is going to often be reasonable.

Lessons

I. Don’t try to prove that the likelihood principle leads to bad estimators.

II. In high-dimensional parameter spaces (as with nuisance parameters), be careful to
assess what kind of prior knowledge is implied by an apparently standard-looking
prior. Use exchangeability to make sure important functions of the distribution
are reasonably uncertain a priori.

III. Good estimators usually are exactly or almost equivalent to Bayesian estimators.
Interpreting them from a Bayesian perspective can often suggest ways to improve
them.

10



GMM

• If one minimizes mutual information between y and β subject to E[g(y; β)] = 0,
E[g(y; β)g(y; β)′ = Σ] and to a fixed marginal on y, one arrives at a pdf for
{y | β, Σ} of the form

exp(−λ(y)− µ(β, Σ)g(y; β)− g(y; β)′Ω(β, Σ)g(y; β)) ,

where λ and µ have to be chosen to meet the requirement that the pdf integrates
to one for all β, Σ and the moment condition is satisfied.

• Note this does not mean g is itself Gaussian, and Ω 6= Σ. (except in linear
models).

• Looking for λ, µ and Ω for some interesting real-world examples of nonlinear g’s
is an interesting project.
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