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Origins of this talk

• I noticed an example in Wasserman’s All of Statistics that purported to
show that any Bayesian approach to estimation in a particular simple, but
high-dimensional model resulted in nonsense, while an easy-to-compute,
intuitively appealing frequentist estimator was available.
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Origins of this talk

• I noticed an example in Wasserman’s All of Statistics that purported to
show that any Bayesian approach to estimation in a particular simple, but
high-dimensional model resulted in nonsense, while an easy-to-compute,
intuitively appealing frequentist estimator was available.

• I explained in a paper published only on my web site (“Understanding
Non-Bayesians”) that Wasserman had made a mistake in writing the
likelihood function and confused independence with exchangeability in
setting the prior.
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• Jamie Robins later joined Wasserman in arguing with me about this
example on the internet, with each side of the argument claiming victory.

• Somewhat later, I had a student asking me how to write a likelihood
function for a model of income distribution when the data were a
weighted sample of individual incomes, and I realized that essentially the
same issues were at play.
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Basu’s elephants

• After I initially presented these slides, at a conference honoring Gary
Chamberlain, Roger Koenker pointed me to Basu’s “elephants” example.

• The example criticizes the Horwitz-Thompson estimator based on ideas
similar to those I lay out here. In the course of his career Basu moved
toward a firmly Bayesian view of inference on survey sample data, and
in the next (8/29/2018) presentation based on these slides there will
be discussion both of his elephants example (if the audience does not
already know it) and the extent to which his work anticipated what I
present here.
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Objectives of the talk

• I try to tie together several kinds of weighted-data situations in a Bayesian
non-parametric (i.e., infinite-dimensional parameter space) settings.
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Objectives of the talk

• I try to tie together several kinds of weighted-data situations in a Bayesian
non-parametric (i.e., infinite-dimensional parameter space) settings.

• There is a risk that everything I say is obvious.

• However, Robins and Wasserman are smart guys, and it’s not clear even
now that they share my view of the issues, so I thought discussing the
issues might be worthwhile.

• The issues are not just “philosophical”. They have implications for how
one deals with weighting, randomization, and survey data generally.
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Easy low-dimensional special case

• Small number of groups i = 1, . . . ,M .

• Fairly large number of observations ni in each group.

• We know the proportion πi of each group in the population.

• We observe yij, j = 1, . . . , ni in each group, yij’s independent and,
within each group i.i.d., mean µi.

• We are interested in the population mean µ of yij, i.e.
∑
i µiπi.
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Easy low-dimensional special case

It’s obvious what to do here: Take group sample means ȳi, Estimate
µ as 1/M

∑
i πiȳi. If the variances of the yij’s are finite we can assume

normality and get a fairly straightforward frequentist distribution theory
for this estimator, and this distribution gets simpler and frees itself of the
normality assumption as the samples sizes ni all get larger.

We could be fully Bayesian here, assuming normality, say putting the
same highly dispersed conjugate prior, independent across i, on µi. But
this would be pedantic. The priors would be dominated by the likelihood
and produce a posterior mean for µ nearly the same as the straightforward
weighted-sum-of-sample-means estimator.
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Introducing selection

• Suppose that the sample has been subject to selection. Each draw is in
group i with known probability πi, but then is discarded with probability
1− pi.

• We know pi for each group.

• The distribution of non-discarded draws across groups gives group i
probability

πipi∑
j πjpj

.
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Another simple estimator

What about estimating µ as

1∑
i ni

∑
i,j

yij
pi
·
∑
i

piπi ?

E

[
yij
pi

]
=
∑
i

µi
pi

piπi∑
j πjpj

=

∑
i µiπi∑
j pjπj

=
µ∑
i piπi

or estimating µ as
1

N

∑
i,j

yij
pi ,

where N is the total number of draws, including those for which y was not
observed. E[ni/N ] = piπi, and ni is independent of yi conditional on pi.
So this is also unbiased for µ. Doesn’t require we know

∑
piπi.
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These simple estimators aren’t so good

• They let the randomness in the number of observations per group
influence the weighting of group means.

• Since we’ve assumed we know the correct weights, we’re better off using
that information.

• When we specialize to the case where yij is always zero or 1, so
µi = P [yij = 1], the last of these simple estimators, presuming knowledge
of N , is the Horwitz-Thompson estimator that Wasserman (and Robins)
hold out as the simple frequentist estimator that could never be arrived
at by a Bayesian.
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Many groups

• Now suppose the number of groups, M , is large. So large, in fact, that
many groups have very few observations, or even have no observations
at all. In the extreme, every observation comes from its own group, with
associated pi and µi, and most groups do not appear in the sample.

• Here the straightforward approach we first proposed does not work. That
relied on the idea that each group’s ni was large enough that likelihood
dominated prior.

• Also, we suggested a prior on the µi’s that made them i.i.d. across
groups. Since now there is a vast number of groups not appearing in the
sample, and since the µi’s for those groups therefore do not appear in
the likelihood, the posterior is the prior for all these µi’s.
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Averaging yi/pi with many groups

• The argument for unbiasedness of the two estimators based on averaging
yi/pi did not depend on the number of observations per group, or on all
groups being represented in the sample.

• On the other hand, those estimators might still not be very good.

• For example, suppose the observed yi’s all lie in a narrow range, say
10± 0.1, but the 1/pi values vary over a wide range.

• Then we might be quite confident that we know the mean value of y for
the population with high precision, but treating yi/pi’s mean and sample
variance as characterizing our uncertainty about µ would not reflect this
confidence.
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A nonparametric Bayesian approach

Getting the likelihood and prior right.

• We must recognize that the pi values in the sample are observed
realizations of a random variable, despite the fact that by assumption we
know in advance the value of p at each point in the probability space.
That we know this is no more than stating we know the distribution for
the draws of pi,

• Also, it makes no sense to assume a fixed prior distribution, for each µi,
i.i.d. across draws. We believe we can learn about µ from the sample,
which implies the observations contain information about the µi’s for the
many unobserved groups.

12



• One way to do this is to make the prior exchangeable, rather than
independent, across draws, with µ an unknown parameter of the
exchangeable distribution.
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Likelihood and prior

We assume
∫
yq(y | µ) dy = µ. We also start using the notation

µ̄ =
∫
µh(µ | p)π(p) dµ dp, i.e. the population mean of µ. What we

observe is either just (yi, pi) (in case unselected draws are just discarded),
or (yiδi, pi, δi), where δi is an indicator for whether we see yi, if we don’t
discard the observations where y is not seen.

(p q(y | µ)h(µ | p))δ(1− p)1−δπ(p) or

q(y | µ)h(µ | p) pπ(p)∫
pπ(p) dp

.

This is a likelihood with an infinite-dimensional unknown “parameter”
h(· | ·)
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How to proceed along this line in practice?

• For example put a distribution on h that makes it lie in a union of
finite-dimensional spaces where E[µ | p] is constant over small intervals
of p values, the number of intervals growing and the lengths of the
intervals shrinking as we go down the sequence of spaces.

• This is likely to lead to inference that is close to converting the problem
to the original simple form, with a finite number of observations per
group, though with a systematic rule for moving the focus of attention
to higher-dimensional spaces as data accumulates.
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Objections to this approach

• Since the parameter space is infinite dimensional, it is likely to be possible
to choose forms of h(· | ·) for which posterior does not converge to the
truth, or a sequence of such forms for which convergence is arbitrarily
slow.

• But this is almost inevitable in an infinite-dimensional space. Essentially
the same problem arises for frequentist asymptotics that provides limiting
distributions, rather than just consistency.
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Regularity conditions on infinite-dimensional parameter
spaces

• Frequentist arguments require conditions on the tail behavior of the
distributions that make the parameter space a topologically small
subspace of the natural one.

• That is, the regularity conditions assert a priori that many possible h(· | ·)
functions that would be hard to distinguish from the true one based on
observed data, are impossible.

• Bayesian priors do the same sort of thing.
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Could a Bayesian end up using something like
Horwitz-Thompson?

• Yes. There is nothing particularly frequentist or Bayesian about ignoring
information.

• If we assume y/p is i.i.d. with mean µ and finite variance, we can do
the usual thing, applying the distribution theory as if y/p were normal,
which is asymptotically robust under mild assumptions.

• In the original Wasserman example, µ was bounded between 0 and 1,
with non-zero probability on the point y/p = 0. Something very close
to the Horwitz-Thompson estimator then emerges if one looks for a
distribution with this support that has the mean of y/p as a sufficient
statistic.
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Conclusion

• Practical cases can easily lie between these extremes.

• E.g., we might put some non-zero probability on the possibility that the
weights are independent of the µ’s.

• Or we might have a sample with many heavily-populated groups, but
also some with very few observations. The lesson of the likelihood
approach is that it can be useful to use a prior/model that allows for
drawing information about sparsely populated groups from more heavily
populated groups.
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