UNDERSTANDING NON-BAYESIANS

ABSTRACT.

[. INTRODUCTION

Once one becomes used to thinking about inference from a Bayesian perspective, it
becomes difficult to understand why many econometricians are uncomfortable with
that way of thinking. But some very good econometricians are either firmly non-
Bayesian or (more commonly these days) think of Bayesian approaches as a “tool”
which might sometimes be appropriate, sometimes not. This paper tries to articulate
the counterarguments to a Bayesian perspective. There are some counterarguments
that are frequently expressed, but are not hard to dismiss. Others, though, corre-
spond to types of application where convenient, seemingly sensible, frequentist tools
exist, while Bayesian approaches are either not yet developed or seem quite incon-
venient. And there are also counterarguments that relate to deep questions about
inference on infinite-dimensional parameter spaces and to corresponding pitfalls in
the application of Bayesian ideas. Section II explains the difference between Bayesian
and frequentist approaches to inference. Section III discusses commonly heard, but
weak, objections, while section IV takes up subtler issues. Section V illustrates the
subtler issues in the context of some specific models.

To relieve the reader’s possible suspense: My conclusion is that the Bayesian
perspective is indeed universally applicable, but that “non-parametric” inference is
hard, in ways about which both Bayesians and non-Bayesians are sometimes care-
less.

II. THE DIFFERENCE BETWEEN BAYESIAN AND FREQUENTIST APPROACHES TO
INFERENCE

Frequentist inference insists on a sharp distinction between unobserved, but non-
random “parameters” and observable, random, data. It works entirely with prob-
ability distributions of data, conditional on unknown parameters. It considers the
random behavior of functions of the data — estimators and test statistics, for exam-
ple — and makes assertions about the distributions of those functions of the data,
conditional on parameters.
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Bayesian inference treats everything as random before it is observed, and every-
thing observed as, once observed, no longer random. It aims at assisting in con-
structing probability statements about anything as yet unobserved (including “pa-
rameters”) conditional on the observed data. Bayesian inference aids in making as-
sertions like, “given the observed data, the probability that 8 is between one and
two is .95”, for example. Naive users of statistical methods sometimes think that this
kind of assertion is what a frequentist confidence interval provides, but this is not
true. For a careful frequentist, a confidence interval, once computed from a partic-
ular sample, either contains 8 or does not contain 8. Once a particular sample has
been observed, there is no random variation left to put probabilities on in a frequen-
tist analysis.

Bayesian inference therefore feeds naturally into discussion of decisions that must
be made under uncertainty, while frequentist analysis does not. There are theorems
showing that under certain assumptions it is optimal to make decisions based on
probability distributions over unknown quantities, but it is probably more important
that most actual decision makers find the language of probability a natural way to
discuss uncertainty and to consider how the results of data analysis may be relevant
to their decisions. If an unknown B matters importantly to a decision, the decision
maker is likely to be assessing probabilities that 8 lies in various regions, and is likely
to be interested in what data analysis implies about those probabilities.

Careful frequentists understand these distinctions and sometimes correct careless
characterizations of the meaning of confidence intervals, test, and estimator proper-
ties. Nonetheless the ease of convenient misinterpretation may be why frequentist
inference focuses on functions of the data that are easily, and commonly, interpreted
as if they were post-sample probability statements about the location of parameters.
“Rejection of Hy : B = 0 at the 5% level” is likely to be interpreted as “the data indi-
cate that with 95% probability that f is nonzero”. “f is an unbiased estimate of A" is
likely to be interpreted as “the data indicate that the expected value of B is f”, and
SO on.

There are some widely applied models, like the standard normal linear regression
model, in which Bayesian probability statements about parameters given the data
have the same form, or almost the same form, as frequentist presample probability
statements about estimators. In many more models Bayesian probability statements
about parameters are nearly the same, in large samples, with high probability, as
frequentist presample probability statements about estimators. Students who have
had only a smattering of statistics therefore often form the mistaken impression that
there is no important distinction between frequentist approaches to inference and
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Bayesian approaches with “flat priors”. The distinguishing feature of Bayesian in-
ference then appears to be that Bayesians give explicit attention to non-flat priors
that are based on subjective prior beliefs.

III. SOME EASILY DISMISSED OBJECTIONS

III.1. Bayesian inference is subjective. Probably the most common mistaken char-
acterization of the difference between Bayesian and frequentist inference locates the
difference in subjectivity vs. objectivity: It is true that Bayesian inference makes
the role of subjective prior beliefs in decision-making explicit, and describes clearly
how such beliefs should be modified in the light of observations. But most scientific
work with data leads to publication, not directly to decision-making. That is, most
data analysis is aimed at an audience who face differing decision problems and may
have diverse prior beliefs. In this situation, as was pointed out long ago by Hildreth
(1963) and (Savage, 1977, p.14-15), useful data analysis summarizes the shape of the
likelihood. Sometimes it is helpful to apply non-flat, simple, standardized priors
in reporting likelihood shape, but these are chosen not to reflect the investigator’s
personal beliefs, but to make the likelihood description more useful to a diverse
audience. A Bayesian perspective makes the entire shape of the likelihood in any
sample directly interpretable, whereas a frequentist perspective has to focus on the
large-sample behavior of the likelihood near its peak.

Though frequentist data analysis makes no explicit use of prior information, good
applied work does use prior beliefs informally even if it is not explicitly Bayesian.
Models are experimented with, and versions that allow reasonable interpretations
of the estimated parameter values are favored. Lag lengths in dynamic models are
experimented with, and shorter lag lengths are favored if longer ones add little ex-
planatory power. These are reasonable ways to behave, but they are not “objective”.

In short, researchers who take a Bayesian perspective can take a completely “ob-
jective” approach, by aiming at description of the likelihood. Frequentists have no
formal interpretation of the global likelihood shape. Frequentist textbook descrip-
tions of methods make no reference to subjective prior beliefs, but everyone recog-
nizes that good applied statistical practice, even for frequentists, entails informal use
of prior beliefs when an actual decision is involved. Its supposed “subjectivity” is
therefore no reason to forswear the Bayesian approach to inference.

III.2. Bayesian inference is harder. There is nothing inherent in the frequentist per-
spective that implies its adherents must propose convenient or intuitively appealing
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estimators and derive their asymptotic properties; it could instead insist on work-
ing only with the most efficient estimators available and working with exact, small-
sample distribution theory. But, perhaps because verifiably maximally efficient fre-
quentist estimators are often not available, or because small-sample distribution the-
ory is dependent on parameter values in complicated ways, the majority of the fre-
quentist literature does in fact derive asymptotic properties of convenient or intu-
itively appealing estimators.

It is generally easier to characterize optimal small-sample inference from a Bayesian
perspective, and much of the Bayesian literature has insisted that this is a special ad-
vantage of the Bayesian approach. Furthermore, the recent spread of conceptually
simple, computer-intensive methods of simulating large samples from posterior dis-
tributions, like Markov chain Monte Carlo methods, has made characterization of
likelihood shape relatively straightforward even in large non-linear models.

Nonetheless there is no reason in principle that very easily implemented estima-
tors like instrumental variables estimators or GMM estimators or kernel-smoothed
regression estimators have to be interpreted from a frequentist perspective. Kwan
(1998) showed that, under widely applicable regularity conditions, an estimator Bt
for which

VT(pr—p)|p——> N(O,%)

allows us with high accuracy and pre-sample probability, in large samples, to ap-
proximate the distribution of v/T(B — Br) | Br as N(0,%). That is, we can inter-
pret standard (1 — «) frequentist approximate confidence sets and regions generated
from the frequentist asymptotic approximate distribution as if they were sets in pa-
rameter space with posterior probability 1 — a.

The regularity conditions that allow this simple conversion of frequentist confi-
dence levels to Bayesian posterior probabilities do not hold universally, however.
The most important condition is one that is usually needed also for generating asymp-
totically accurate frequentist confidence intervals: uniformity of the rate of conver-
gence to the asymptotic distribution in some neighborhood of the true parameter
value. In one important case, that of regression models for time series where there
are some unit roots, the non-uniformity of convergence rates makes construction of
frequentist asymptotic confidence regions difficult, while the usual normal model
OLS computations of posterior probabilities continue to be asymptotically accurate
under weak assumptions on disturbance distributions, even when unit roots are
present (Kim, 1994).

These results allow us to form posterior distributions conditional on the estima-
tor BT, as if we could see only the estimator and not the underlying data. This is of
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course sometimes the case, as when we are reading an article that reports the estima-
tors but not the full data set. A related result is that if we have a trustworthy model
for which the likelihood function can be computed, the likelihood function will, un-
der regularity conditions, take on a Gaussian shape in large samples, with the mean
at the maximum likelihood estimator (MLE) and the covariance matrix given by the
usual frequentist estimator for the covariance matrix of a MLE. ! This result differs
from the previous one in three important ways:

(i) It implies that conditioning on the MLE and using its asymptotic Gaussian
distribution is, approximately in large samples, as good as conditioning on
all the data.

(ii) It is only a computational shortcut: we can always check the accuracy of this
Gaussian approximation to the shape of the likelihood by evaluating the like-
lihood itself at some points in the parameter space to see if the Gaussian ap-
proximation is accurate. In this respect, the result is very different from the
computationally similar frequentist result, since there is no interpretation in
the frequentist framework for the shape of the likelihood in any single finite
sample.

(iii) This result has no “robustness” component. Frequentist asymptotic distribu-
tions often can be derived from weak assumptions that do not require spec-
ifying a full likelihood function. These weak assumptions carry over to the
result that the frequentist asymptotic normal distributions can be “flipped”
to be interpreted as conditional distributions of B | Br. But interpreting the
likelihood shape as the posterior generally requires believing that the likeli-
hood is correctly specified. We take up these robustness issues again in the
section below on “sandwich” estimators.

So the view that Bayesian inference is harder is an artifact of the emphasis in the
previous literature. Approximate frequentist distribution theory based on weak as-
sumptions about distributions generally has an equally simple Bayesian interpre-
tation that rests on equally weak assumptions. In fact, in one leading, practically
important case (time series models with unit roots) the Bayesian approach leads to
robust, convenient, asymptotically accurate distribution theory in a broader class of
cases than does a frequentist approach.

Bayesians should recognize that the fundamental characteristic of their approach
is that it conditions on the data, not that it insists on “doing things the hard way”.

lgee Gelman, Carlin, Stern, and Rubin (2004, Appendix B) for an informal discussion of these
results, and the references given there for a more general treatment.
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What I would call the “pragmatic Bayesian” approach accepts that in some circum-
stances we need to be able to reach conclusions conditional on standard, easily com-
puted statistics, even when they are not sufficient statistics, and that sometimes ap-
proximate distribution theory, justified by the fact that in large samples with high
probability the approximation is good, is the best that can be done with the available
time and reources. Yet at the same time, it is always worthwhile to consider whether
such compromises are throwing away a great deal of information or resulting in se-
riously distorted posterior distributions.

IV. SOME LESS EASILY DISMISSED OBJECTIONS

IV.1. Handy methods that seem un-Bayesian. Probably more important than philo-
sophical issues or computational costs to the persistence of frequentist inference in
econometrics is the fact that some of the most widely used econometric methods
seem to have no straightforward Bayesian counterpart. Instrumental variables (IV)
estimation, “sandwich” style (or “clustered”) robust estimated covariance matrices
for least squares or IV estimates, generalized method of moments estimation (GMM),
and kernel methods for estimating nonlinear regressions or pdf’s all fall in this cate-
gory. Each is easy to describe and implement. Each is justified by frequentist asymp-
totic theory that does not require that a correct likelihood be known; instead only a
few moment conditions seem to be required. And none of them emerges neatly as
the prescription for inference from a Bayesian approach.

We already have a quick answer to this gap in Bayesian methods — as we ob-
served above, the approximate frequentist distribution theory for these estimators
can be interpreted as allowing formation of approximate Bayesian posterior distri-
butions, and this under essentially the same weak assumptions used in generating
the frequentist asymptotic theory.

But every application of asymptotic approximate theory relying on “weak as-
sumptions” involves a Bayesian judgment call. The asymptotics are invoked be-
cause accurate and convenient small-sample theory is not available under the weak
assumptions. That is, though there may be models in the class defined by the weak
assumptions under which the asymptotic theory is correct for the sample at hand,
there are others for which the asymptotic theory is incorrect. If a frequentist uses the
asymptotic approximation in a given sample, stating only the weak assumptions,
he or she is implicitly ruling out those parts of the parameter space in which the
asymptotic approximation, in this sample size, and with these conditioning vari-
ables, is inaccurate. These implicit assumptions are Bayesian in the sense that they
invoke the researcher’s pre-sample, or prior, beliefs about which parameter values
or models are likely.
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For example, it is widely understood that the distribution theory for ordinary least
squares estimates that is exactly correct in the standard normal linear model (SNLM)
2
y | X ~N(Xg o) (1)
Tx1 Txk

is approximately correct, asymptotically, under much weaker assumptions on the
distribution of ¢;, albeit with some assumptions about the distribution of X added.
For example, it is sufficient that the conditional covariance matrix of y | X is inde-

pendent of X and diagonal, the individual errors

e =y — X¢p (2)
1xk

together with X; form a jointly stationary, finite variance, i.i.d. process, and the min-
imal eigenvalue of E[X[X;] exceeds zero. But in a sample with given X matrix, we
can always choose a zero-mean, finite-variance distribution for the ¢;’s such that the
Gaussian distribution theory is arbitrarily inaccurate. If we use the Gaussian theory
in a sample of size 50, we are implicitly assuming that, say, a distribution for &; that
puts probability .9999 on -1 and .0001 on 9999 is very unlikely. This is a distribution
for ¢; that has zero mean and finite variance, but if it were the true error distribution
and X included a constant vector, we would with high probability find a perfect fit
in a sample of size 50, with the OLS estimates incorrect and the Gaussian distribu-
tion theory indicating no uncertainty at all about the parameter values. While it is
easy to give examples like this of deviations from Gaussianity that in a particular
sample would make the asymptotic theory inaccurate, it is not so easy to character-
ize the class of all such examples. Nonetheless applied work routinely claims not to
require a normality assumption, without discussing how close to normality, and in
what sense, the error distribution has to be in order to justify the asymptotic approx-
imation.

Another example is kernel estimation of the nonlinear regression model, a simple
form of which is

ye = f(xt) + & 3)
et | xy ~ N(0,1) forall ¢ 4)
(yt, x¢) independent of (xs,ys), allt #s. (5)

Kernel estimators estimate f(x*), the value of f at a particular point x, by averaging
observed values of y; for xjs within a neighborhood of length or volume # (called
the bandwidth) around x*. If h shrinks with sample size at an appropriate rate, then
kernel estimates of f converge to true values and there is an asymptotic approximate
distribution theory for the estimates. The asymptotic theory applies for any true f in
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a broad class, subject to smoothness restrictions. In a finite sample, however, there
will be a particular & in use, and it is clear that the estimates will be inaccurate if
f varies greatly over regions of size 1 and also at points x* for which there are few
observed x; values in an & neighborhood. In this case it is probably more intuitively
obvious what implicit constraints are placed on the parameter space of f’s when
the asymptotic approximate distribution theory is invoked than in the case of OLS
without explicit distributional assumptions. The fact that the restrictions are seldom
brought out explicitly may therefore not matter so much, at least when bandwidth
is reported prominently along with estimated f’s.

But the facts that we can interpret these handy frequentist procedures to yield
limited-information Bayesian posteriors and that when applied to small samples
they in effect require asserting prior beliefs about parameter values do not form
a completely satisfying Bayesian response. In assessing any statistical procedure
and distribution theory, we would like to know whether it corresponds, at least ap-
proximately, to a full-information Bayesian posterior under some assumed model
or class of models. Finding such models is useful in two ways. First, if the model
does not exist, or turns out to require making clearly unreasonable assumptions, we
may be led to ways of improving on the procedure. Second, if the model does exist
it illuminates the assumptions implicit in the procedure and allows us to generate
small-sample posterior distributions with weak-assumption asymptotic support. In
the cases of the SNLM, GMM, 1V, and OLS with sandwich-style distribution theory,
there are models that are usable in small samples and have the frequentist asympto-
tic distributions as the limiting form of the posterior. In some cases these models are
easy to use, in others not so easy. For kernel regression estimation, there apparently
is no such model, though there is a class of models that delivers kernel-like estimates
that adapt bandwidth to the density of the distribution of x values.

These models are conservative in a sense — they promise no more precise esti-
mates, asymptotically, than what can be obtained under the “weakest” of the models
defined by the assumptions supporting the frequentist asymptotics. But to say they
are conservative may be misleading. Using a model that fails to make efficient use of
the data can lead to large, avoidable losses. Concluding that the data do not suport
a finding that a drug or a social policy intervention has important effects is a costly
error if the conclusion is incorrect, and reaching such a conclusion in a naive attempt
to be “robust” by using “weak assumptions” is not in any real sense conservative.

IV.2. Generating conservative models. For a given set of maintained weak assump-
tions, there may be many finite-sample models that imply asymptotic likelihood

%See the discussion of nonparametric regression in Sims (2000).
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shape that matches the shape of the frequentist asymptotic distribution of param-
eter estimates. But specifying even one of these models may at first glance seem a
difficult task. There is a general principle that is often useful in this respect, how-
ever. Suppose we know the marginal distribution of the observed data y, given by a
density function q(), and the prior distribution on a parameter of interest f, given by
71(B). One appealing definition of a conservative model is then a conditional density
for y | B, given by f(y | B), that minimizes the Shannon mutual information be-
tween y and B subject to our weak assumptions. Mutual information is minimized
at zero when y and B are independent, so if our weak assumptions do not rule out
independence of y and B, the solution is f(y | B) = q(y), all y and B. But if the
weak assumptions are enough to imply we can learn about 8 by observing y, we get
a more interesting answer.

Suppose our weak assumption is that there is a vector ¢(y, ) of functions such
that E[¢(y, B) | B] = 0, all B. The problem then is

min [ log(f(y | ) (y | B)(8) dydp — [ log(a(y))a(y) dy ©
subjectto [ f(y | B)g(y, B)dy =0, all B, 7)
[fw1pdy=1, ang, ®)

/f(y | B)(B)dp=q(y), ally, ©)

fly|p) =0, allyp. (10)

First order conditions then give us, when f(y | B) > 0 everywhere,

() (1+108(f(y | B) ) = M(B)3(y, B) + Aa(B) + As(y)(B), (1)

and thus

f(y | B) = A(B)B(y)etPswp) (12)

If we treat g as a choice variable rather than as exogenously given and add the cor-
responding constraint q(y) = [ f(y | B)7t(B)dp, we conclude that B(y) must be
proportional to q(y), y’s marginal density.

Both with and without the constraint of a given (), this problem has the form
of one with an objective function that is convex in f and constraints that are linear
in f 3 Therefore if we find a solution to the first-order conditions, it is a solution.
Solving is not easy in general, however, because the f > 0 constraints may easily

Swith q free, the objective is not convex in f and g jointly, but if g is substituted out as g(y) =
J f(y | B)rt(B) dB, the objective is convex in f.
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bind, so that no solution exists with f > 0 for all B,y. In fact it is easy to generate
examples where the solution, when the distribution of y is unconstrained, makes the
distribution of y discrete, in which case the FOC'’s for the continuously-distributed
case have no solution and are little help. Nonetheless it is often possible to generate
solutions for particular 77(), g() pairs, often for limiting cases where one or both are
flat.* We shall see some examples of this below.

These solutions are in some respects natural and appealing. For the limiting case
where 71(B) is flat, so that f is just the likelihood, they imply that the likelihood
depends on y only through the function g(y, ), and in the case where g is i.i.d.,
the likelihood for repeated samples 1, ..., T depends on y only through Y, ¢(v¢, B).
When 0g(y, B) /9y does not depend on B, the part of g that does not depend on B
is a sufficient statistic. So if we can find a model like this its likelihood will lead
to inference based on the same functions of the data that underly the frequentist
distribution theory for the estimators.

However, models generated this way are conservative only for inference about
B. If other aspects of the distribution of y are of interest, these models maximally
conservative about  are generally dogmatic about other aspects of the distribution.

IV.3. Non-parametrics. In applied work, researchers often use distribution theory
that claims to rely only on weak assumptions and think of themselves as thereby
being robust against a wide array of deviations from some central model. Another
approach to robustness is to contemplate specific deviations from the assumptions
of a central model and experiment with extensions of the model that allow for these
deviations. In regression models, for example, it is common to look for outliers,
either informally or by expanding the model to allow for fat-tailed disturbance dis-
tributions or rare data points drawn from some very different distribution.

The conservative model approach of the previous section is a Bayesian analogue to
the weak assumptions approach. Bayesians can also follow the other approach, more
systematically than is usual in applied work: Put a prior distribution on an entire
infinite-dimensional space of models. Converting model and prior to a posterior
over the parameter space given the data is in principle a well-defined operation even
in an infinite-dimensional space.

However, the mathematics of probability measures on infinite-dimensional spaces
is in some respects paradoxical. In a finite-dimensional parameter space, if we use
a prior distribution that has an everywhere positive density function, and if there

“The mathematical structure of this problem is dual to that of maximizing an objective function un-
der uncertainty with a constraint on the mutual information between action and exogenous random
disturbance. See Sims (2006).
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is a consistent estimator for the unknown parameter, then the posterior distribu-
tion collapses on the true parameter value with probability one, except possibly on
a subset of the parameter space of zero Lebesgue measure. It is a consequence of
the martingale convergence theorem Doob (1949) that in any space Bayes estimates
collapse on the true value with prior probability one. But Freedman (1963) and Di-
aconis and Freedman (1986) show that in infinite-dimensional parameter spaces,
even if the prior puts positive probability on every open set, this is not enough to
guarantee consistency of Bayesian posteriors on “most” of the parameter space.’
Freedman characterizes the results as showing that in infinite-dimensional spaces
Bayesian estimates are usually inconsistent. Many statisticians and econometricians
think of these results as showing that Bayesian inference on infinite-dimensional pa-
rameter spaces is inherently unreliable. The theory of Bayesian inference on infinite-
dimensional spaces, including both examples of inconsistency and discussion of pri-
ors that do guarantee consistency in important models, is laid out nicely in Gosh and
Ramamoorthi (2003).

The Diaconis and Freedman results reflect some important general properties of
infinite-dimensional linear spaces. Most infinite-dimensional parameter spaces are
naturally taken to be complete, locally convex, topological vector spaces or large
subsets of them. Examples are sequences of coefficients on lags in dynamic mod-
els, which are often naturally treated as lying in ¢, (square summable sequences)
or /1 (absolutely summable sequences) or spaces of functions in non-parametric re-
gression models, where square-integrable functions (L,) or absolutely integrable (L;)
might form natural parameter spaces. Such spaces are in important respects drasti-
cally different from finite-dimensional Euclidean spaces.

(1) Compact sets are nowhere dense, yet, as in any separable metrizable space,
every probability measure puts probability one on a countable union of com-
pact sets. Therefore every probability measure puts probability one on a set
of Category 1, sometimes called a “meager” set.

(2) There is no analogue to Lebesgue measure — a measure that is translation in-
variant. In a finite-dimensional space, Lebesgue measure of a set S is the same
as Lebesgue measure of a + S for any vector 4, and this property characterizes
Lebesgue measure. No probability measure on an infinite dimensional space

SThere is actually a series of papers by Freedman and Diaconis and Freedman working out various
paradoxical, and not-so=paradoxical, examples.
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is translation invariant. Worse than that, given any measure y on an infinite-
dimensional space, there is a set S with #(S) > 0 and p(a + S) = 0 for some
a®

(3) Metrics can agree in their definitions of convergence when restricted to finite-
dimensional subspaces of the parameter space, yet disagree on the space as a

whole.

The first two of these facts imply that any assertion of a probability distribution on
an infinite-dimensional linear space is dogmatic, in the sense that it puts probability
zero on “most” of the space, and controversial, in the sense that it puts probability
zero on some sets that other distributions, differing only in where they are centered,
give positive probability. The third fact implies that thinking about a prior on an
infinite-dimensional space in terms of its implications for finite-dimensional sub-
spaces can miss important aspects of its implications.

Bayesian inference on infinite-dimensional spaces is therefore always more strongly
sensitive to the prior than is the case in finite-dimensional spaces. The practical
implication of the complications of putting priors on infinite-dimensional spaces is
that in non-parametric or semi-parametric Bayesian inference careful attention to the
implications of the prior is much more important than in most finite-dimensional
models. One could dismiss the inconsistency results by arguing that once one has
carefully determined one’s prior beliefs, failure of consistency on sets of prior prob-
ability zero should not be a concern. But the fact is that in practice priors are usually
constructed to be convenient and made from conventional sets of building blocks
(normal distributions, beta distributions, etc.). High-dimensional priors are often
built up by considering low-dimensional subspaces first, then combining them. Pri-
ors cobbled together this way may sometimes roughly represent reasonable prior
beliefs, but in high-dimensional spaces they can also easily turn out to be dogmatic
in unintended ways. A failure of consistency on an intuitively large set is often a
symptom of having specified a prior with unintended strong implications.

These pitfalls and paradoxes are not special defects of Bayesian inference. They
reflect the difficulty of any kind of inference on infinite-dimensional spaces. The fre-
quentist counterpart to the question of whether whether Bayesian posteriors are con-
sistent is the question of whether there exists a sequence {S,(X)} of confidence sets
such that for each sample size n, P[B € S,,(X) | B] > 1 — &y, with &, — 0 and the size
of S,,(X) shrinking to zero with n. An earlier paper of mine (1971) shows that ob-
taining asymptotically valid frequentist confidence intervals from sieve estimation
schemes requires the same sort of strong a priori restrictions on the parameter space

6See Gelfand and Vilenkin (1964, Chapter 4, section 5.3) and Schaefer (1966, Chapter 1, section 4.3).



UNDERSTANDING NON-BAYESIANS 13

as are implied by assertion of a prior. For example, in the case of the non-parametric
regression model (3-5), constructing asymptotically valid confidence intervals gen-
erally requires smoothness restrictions on the function f(-). But if we define the
distance between f; and f, so that when f; and f; are close the distributions of the
observed data they imply are close, we will find that [(f1(x) — f2(x))?dx is the right
definition of closeness. With this definition of closeness (i.e. this topology), requiring
even continuity of f eliminates most of the parameter space.

In time series applications we have models of the form y; = Y 5 as€;—s, where the
¢¢ are innovations in the y process. Sometimes we are interested in ) ;" a5, which de-
termines the spectral density at zero frequency, or “long run variance”. But the topol-
ogy on « sequences induced by considering differences in implied distributions for y
is 5, the metric of sum of squared deviations. }_ a5, though it is ¢;-continuous, is not
¢>-continuous. This means that we cannot get conclusions about ) a; from the like-
lihood alone: we have to eliminate most of the a space with prior restrictions. This
is a well known issue’. For Bayesians, it implies that attempts to estimate long run
variance are inevitably sensitive to the prior, even in large samples. For frequentists,
it implies that the usual approach in time series models, estimating finitely param-
eterized models that expand with the amount of available data, makes conclusions
about long run variance sensitive to the details of the finite-dimensional approxi-
mate models and the rate at which they are expanded. For estimation directly in the
frequency domain, the usual kernel-smoothing approach yields estimates of long
run variance that are sensitive to smoothness assumptions, as in kernel regression.

The mathematical theory underlying this section of the paper is difficult and ab-
stract, but this should not be taken to mean that Bayesian inference on infinite (or
even large) dimensional parameter spaces is impossible or even terribly difficult. It
is no more difficult or pitfall-ridden than other approaches to the same models. But
one has to be careful.

V. EXAMPLES

We consider several models and procedures that illustrate the principles and pit-
falls described above.

V.1. The Wasserman example. Wasserman (2004) presents an example (11.9, p.186-
188) meant to show that, because they are “slaves to likelihood”, Bayesian methods
“run into problems when the parameter space is high dimensional”. It claims to
display a case where any likelihood-based method must give poor results, while
a simple, well-behaved frequentist estimator, together with confidence intervals, is

Faust (1999) and Sims (1972) discuss versions of this issue.
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available. The example does not actually support these claims. A simple estimator,
uniformly better than the estimator suggested in the example, does emerge from
a Bayesian approach based on a conservative model. And still better estimators
are available if we recognize and model appropriately the presence of an infinite-
dimensional unknown parameter.

We observe a sequence of i.i.d. draws (§;, R;, Y;),i =1,..., N of a vector of random
variables (¢, R, Y). These three random variables are jointly distributed with another,
unobserved, random variable 6, and ¢;, R;, Y;, 6; are jointly i.i.d. across i. The joint
distribution is specified as follows.

(1) ¢ has a known distribution on [0, 1].

(2) R|( ¢,0) is 1 with probability ¢ and zero with probability 1 — ¢.

(3) Y| ( & 6,R =1)is 1 with probability 6, 0 with probability 1 — 6.

(4) Y| ( & 6,R = 0) is not observed.
We do not know the joint distribution of (&,6), only the marginal for . We are
interested in ¥ = E[f]. The joint pdf of ;, R;, Y}, 6; is

p(&)a(6:] € )E (1 — &) N6 (1 — )RR, (13)
What we are trying to estimateis ¢ = [ 0p(&)g(0|& ) d¢ d6, and the function (- | - )
is an inifinite-dimensional unknown parameter.

Wasserman ignores the p and g components of the likelihood. That is, he writes
down the conditional pdf of Y; and R;Y; given the random variables ¢; and 6; and
calls that the likelihood. The fact that the distribution of ¢ is assumed known means
that §(w), the function on the underlying space defining ¢; as a random variable, is
known. But this does not make ¢;, the value of the random variable for the i"th obser-
vation, a parameter. The only unknown “parameter” here is q(6 | ¢ ), the conditional
pdf for 6 given ¢. Since 6; is unobserved, to obtain a pdf for the observed data we
need to integrate the pdf w.r.t. 6;.

This is a challenging problem, because it involves estimation in the infinite-dimensional
parameter space of unknown conditional distributions of 6 | ¢ , yet it is of a type that
arises in practice — some observations are missing, with the stochastic mechanism
generating the missing cases uncertain.

What kind of prior probability measure over 4 would make sense here, for a
Bayesian statistician reporting to an audience who are interested in ¢ but uncer-
tain of its value? It perhaps goes without saying, that we can immediately rule out
priors that imply E[6] is known with certainty, or even with great precision. If we are
interested in estimating 1 and uncertain about it, we can’t have a prior that implies
we know it a priori. (This point may seem pedantic, but as we will see below, it is
relevant to Wasserman'’s discussion of the problem.)
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Independence. It would be convenient analytically to postulate that 6 and ¢ are in-
dependent, i.e. that (6 |¢ ) does not depend on ¢. If that were true, we could fo-
cus attention on the R; = 1 cases and treat them as an ordinary i.i.d. sample with
P[Y; = 1] = 6;. The selection mechanism (the ¢;’s) would be irrelevant to inference.
A simple Bayesian setup for this case would postulate that 6 ~ Beta(yv, (1 — ¢)v),
where v > 0 is a constant that determines how tightly we expect observed 6 values
to cluster around their mean, {. We would have to provide a prior for ¢ also, which
might well be taken as uniform on [0,1]. This would lead to a Beta(n + 1,m + 1)
posterior distribution on ¥, where 7 is the number of observed Y; = 1 cases and m
is the number of observed Y; = 0 cases. The posterior mean of ¢ would therefore
be p = (n+1)/(n+ m+2). For very small numbers of observed Y’s, this is close
to the prior mean of .5, but for large n and m it is close to n/(n + m), an intuitively
simple and appealing estimator for this independence case.

The posterior distribution is not only nicely behaved here, it is in a certain sense
robust. We know that in this i.i.d. case the sample mean of the Y;’s, which is negli-
gibly different from ¢ in large samples, has a Gaussian asymptotic distribution with
variance consistently estimated by 1/N times the sample variance. If we were to
take a “Bayesian limited information” approach (Kwan, 1998) and construct an ap-
proximate posterior based just on this frequentist asymptotic theory, we would get
exactly the same limiting distribution that emerges from using the exact Bayesian
small-sample theory underlying . In other words, we know that any other model
that leads to focusing attention on sample mean and variance of the observed points
will lead to about the same inferences in large samples.

Dependence: direct approach. However, all we have done here is to observe that under
independence we can easily “integrate out” the 6;’s, so the problem becomes finite-
dimensional. The reason for introducing ¢ in the first place has to be that we are
concerned that it might not be independent of 0. That is, we must think it possible
that observations with particular values of § may be more or less likely to be selected
into the sample. If, for example, high 0’s tend to correspond to high ¢’s, we will be
observing Y’s for cases with unrepresentatively high values of 6 and ¢ will be biased
upward.

If we want to avoid such bias, and at the same time generate reliable statements
about the uncertainty of our estimates, there is no choice (whether one takes a fre-
quentist or a Bayesian approach) but to model the joint behavior of 6 and ¢. The
unknown parameter here is q(0 | ¢ ), the conditional pdf of 0. As in the indepen-
dence version of the problem, mistakes on the form of g as a function of 8 for given
¢ probably don’t matter much, so long as we have parameters for location and scale.
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The crucial thing is to model flexibly the dependence of 4 on ¢. Here, as often in
infinite-dimensional problems, a natural and convenient approach is a “sieve”. That
is, we think up a countable sequence of finite-parameter models, indexed by k, in
such a way that all the shapes for g as a function of 6 that we think likely are well
approximated by some element of the k’th parameter space, if k is large enough. A
Bayesian sieve puts probability over the k’s as well as over the parameters within
each space. Such a setup leads generally to, in a given sample, putting nearly all
probability on a small number of k values (often just one), yet provides a systematic
rule for increasing the size of the parameter space as evidence of more complex be-
havior accumulates. There are many ways to set up reasonable sieves in this case. A
straightforward approach might be to partition [0, 1] into k intervals I, ¢ = 1,...,k,
and postulate that there is a fixed g, that holds for all { € I,. If we use the same
exchangeable-Beta form within each I, that we used above for the independence
case, but of course with mean ¢, varying with ¢, we get k replicas of the indepen-
dence case problem. This will, at the expense of a bit more work, insulate us against
bias from dependence between ¢ and 6.

Of course this sieve approach puts prior probability one on step-function forms
for q as a function of ¢. Even though these forms approximate a very wide class of
functions well, they are not in themselves a large fraction of the space of all possible
forms for g as a function of . As we have pointed out above, this is a problem for
any (Bayesian or frequentist) approach to inference on an infinite-dimensional topo-
logical vector space. There is no way to make reliable probability statements about
estimates in such a space without concentrating attention on a subset of the space
that is small, in the same sense that a countable union of finite-dimensional spaces
is a small subset of, say, the space of square-summable sequences. We can hope that
estimators are consistent on the whole space, and the subset on which statements
about uncertainty concerning a finite-dimensional parameter of interest behave well
may be much larger than the support of the prior distribution. But generally we can’t
proceed in such a way as to rule out the possibility of repeatedly claiming arbitrar-
ily high certainty about assertions that aren’t true, if we insist that every parameter
value in an infinite-dimensional topological vector space is a possibility.

Limited information. The Horwitz-Thompson estimator that Wasserman suggests is
a simple, information-wasting approach. It ignores the difference between obser-
vations in which Y is unobserved and observations in which Y is observed to be
zero, proceeding as if all we observed were 0’s when either Y; = 0 or R; = 0 and
Z; = Y;/¢; when R; = Y; = 1. The Horwitz-Thompson estimator simply estimates
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Y as 1/21 = Y. Z;/N, where N is the full sample, including all the zero values for Z;.
Supposing the Z;’s were all we could see, what would be a Bayesian approach?

We would have i.i.d. draws of Z;, which has discrete probability at 0 and an un-
known distribution over (1, c0) conditional on being non-zero. The probability of a
non-zero observation is « > 0. If we maximize entropy of Z subject to the known
mean, we arrive at an exponential distribution for Z — 1 with rate parameter y. The
likelihood is then

o (1 — a)myne—ﬂxzi>o(zi—1) ) (14)
where 1 is the number of non-zero observations and m the number of zero observa-
tions on Z. Note that 1 > E[Z] = a(u + 1)/p, which in turn implies y > a/(1 — a).
One class of conjugate prior is, for v > 0, proportional to ye™#7 over the region
where 0 < a« < u/(p+1). Note that because of the bound on the range of « for
given y, this prior, though “flat” in « conditional on y, has a marginal pdf propor-
tional to exp(—ya/(1 — «)), which declines sharply as « — 1.

If we ignore the inequality constraint on (a, 1), we can compute analytically the
posterior mean of § = E[Z;] = a-(u~' 4+ 1). With the exponential prior on p,
the posterior makes & and p independent. The « posterior is Beta(n, m), while yu is
Gamma(n +1,(n+m)(Z —n/(n+m) +v/(n+m))), where Z is the sample mean
of the Z;’s, averaging over all Z’s, zero and non-zero. Since the expectation of the
inverse of a Gamma(p, a) variable is a/(p — 1), the posterior mean of 6 is then

L_om <(n+m)(Z—n/(n—|—m)—|—’y/(n—|—m))
n—+m n

5 24
+ 1) =7+ T
This is very close, for large n and m, to simply using the sample mean of Z as the
estimate of 0.

However, it is not a good idea to ignore the inequality constraint. If one does so,
the estimator can emerge as greater than one, indeed is quite likely to do so if 8’s dis-
tribution concentrates near its upper limit of 1. It doesn’t seem that there is an easy
analytic formula for the posterior mean that accounts for the inequality constraint,
but the problem reduces to a simple one-dimensional numerical integration.

As a simple example consider the case where the mean of a sample of 100 draws
of Z; is .8. In Figure 1 we show the posterior pdf’s and ¢ for the cases where the
number of non-zero draws is 3, 10, 50 and 70. These pdf’s were estimated from
4000 Monte Carlo draws from each posterior distribution. Draws were made from
the posterior ignoring the inequality constraint (which makes a and p independent
Beta and Gamma variates, respectively) and those violating it were discarded. It is
clear that, as makes intuitive sense, a sample with 70 nonzero Z; draws averaging
8/7 (and hence clustered close to the Z; > 1 lower bound for nonzero draws) gives
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FIGURE 1. Posterior densities for i with ) = .8, various numbers of
non-zero Z

much more reliable inference about i than a sample with the same sample mean for
Z, but with only three nonzero values, averaging about 27.

Of course the Horwitz-Thompson estimator is 1?7 = .8 for all of these samples.
Wasserman points out that there is a uniform upper bound on the variance of 1/§, if
we know an a priori certain positive lower bound on ¢, say { > § > 0. The bound
is1/(Né&) —1/Nif 6 < .5and 1/(4Ns?) if § > .5° Because these are uniform across
the parameter space, they can be used to construct (very) conservative interval esti-
mates. In a sample this size, any value of ¢ less than about % produces conservative
interval estimates of this type that include the entire (0, 1) interval.

Wasserman’s conclusions about Bayesian methods in this example. Wasserman argues
that Bayesian posterior distributions for this problem must be nearly identical to

8Wasserman suggests the weaker lower bound 1/(Né?), which avoids using separate formulas for
the two ranges.
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priors. He also argues that Bayesian estimators for ¢ must ignore observations on ¢,
because the likelihood factors into a function of ¢;’s and a function of 6;’s. He also
says there is no way to derive the Horwitz-Thompson estimator from a Bayesian
perspective.

The claim that Bayesian approaches must make the posterior insensitive to the
data arises from Wasserman’s having implicitly assumed a prior drawn from a class
that makes i known a priori with near certainty — recall that we began by noting
that this was obviously a bad idea. However it is not quite so obviously a bad idea
in the specific setup that Wasserman uses. Our presentation of the example makes ¢
and 6 continuously distributed. Probably to avoid in a textbook having to talk about
“parameters” that are functions on the real line, Wasserman supposes that ¢ and 6
are random variables defined on a large, but finite and discrete, probability space,
whose points are indexed by the integers w = 1,..., B, with all points w having
measure 1/B. He suggests thinking of B as much larger than sample size N. As
a practical matter, if, say, B = 100,000 and N = 1000, there is little difference be-
tween a sample {6;} drawn as N ii.d. draws from f(¢,v) and a sample drawn in
two stages — first by drawing B values of 0 from f (¢, v), then drawing N values by
sampling with replacement from the initially drawn B values of 6. If i is the expec-
tation of a random variable with the f pdf, the posterior on ¢ after N observations
will differ slightly from the posterior on (1/B) Y-F 8(w). The Bayesian methods dis-
cussed above can be extended straightforwardly to produce estimators of both these
concepts.

But when Wasserman writes the likelihood in terms of (w), w = 1,...,B as “pa-
rameters”, he notes that most of these parameters don’t appear in the likelihood
function and that the likelihood factors into one piece involving these parameters
and another piece involving the ¢(w)’s. He then concludes that Bayesian methods
must have posterior means equal to prior means for most of the 6(w) values, since
most of them will correspond to w’s that have not been observed. But, as should be
clear by now, this is just a mistake. Priors don’t have to preserve independence of
parameters that would be independent if we used the likelihood directly as posterior
(i.e. used a “flat” prior). It makes no sense in this problem to assume prior beliefs
about 6 independent across w values, as this would imply that we knew ¢ with ex-
tremely high precision a priori. It also makes no sense to assume independence in
the prior of ¢ and 0, as that would imply that we knew selection was independent of
the parameter of interest, and hence that we could ignore it in conducting inference.

So one might say that this section’s analysis has turned Wasserman’s conclusions
completely on their ear. But this is not quite true. Wasserman is an excellent statis-
tician who understands and teaches Bayesian methods. The structure of this tricky
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little problem led him to postulate a prior that, without his apparently realizing it,
was unreasonably dogmatic along two dimensions important to the data analysis
(independence of 6(w) across w and independence between ¢ and ). Asymptoti-
cally, with B held fixed and sample size increasing to infinity, priors do not affect
inference, in this problem as in many others. Indeed if B were not extremely large
allowing for dependence across i in the prior for 6’s and dependence between ¢ and
8 might have little effect on inference. It is the large B that makes these apparently
ordinary assumptions influential, and unreasonable. So what Wasserman’s example
illustrates is one of the pitfalls of inference in high-dimensional spaces — priors are
inevitably dogmatic in certain directions, and it is important to insure that they are
not dogmatic in ways that matter to the inferential problem at hand.

The example also illustrates the fact that apparently reasonable methods derived
by non-Bayesian methods sometimes turn out to be unexpectedly quirky, because
there are types of samples or points in the parameter space where they show sur-
prising misbehavior. The unbiased, consistent, Horwitz-Thompson estimator turns
out to be inadmissible, meaning strictly dominated in mean squared error, because
it will occasionally produce 1,@ > 1, and even do so with probability near .5 at some
points in the parameter space. Of course reasonable applied researchers would not
accept 1?7 estimator values outside [0, 1], and would adjust them. But if they were
the usual sort of practical frequentist, they might well not explain, in those instances
where adjustment is not needed, that because they would modify 1/§ if the estimates
exceeded 1, the estimates they are presenting are not in fact unbiased.

V.2. Robust variance estimates in regression. Ordinary least squares (OLS) esti-
mates of a linear regression equation are in a certain sense robust. It is easily verified
that the standard normal linear model (SNLM) emerges as the solution to the mini-
mum mutual information problem when the moments assumed are E[y | X] = XB
and Var(y | X) = 02, and this model of course yields the same distribution theory
that is obtainable as an asymptotic distribution under much weaker assumptions.
Nonetheless it has become common in applied work, since computer packages have
made this a one-click option, to present OLS estimates with “clustered” or “robust”
standard errors rather than those that emerge from the SNLM. Miiller (2009) argues
that a Bayesian decision-maker can justify using OLS with a sandwich covariance
matrix when the probability limit of the OLS estimator is the object of interest, de-
spite the fact that the SNLM is known not to be the true model.

Miiller’s suggestion can be supported by a limited-information Bayesian argu-
ment. If the data are i.i.d., the frequentist asymptotic distribution theory that asserts
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that in large samples approximately
Bors ~ N(B, (X'X) ™1} XiX:hy(X'X) ™) (15)

can be flipped to assert that the posterior, conditional on 3 and the sandwich covari-
ance estimate itself, has this same form.

But if the sandwich covariance matrix differs much from the usual 6?(X’X) ! co-
variance matrix for B, this must reflect misspecification in the SNLM model under-
lying the OLS estimate. Such a discrepancy can be regarded as a test of misspeci-
fication, therefore, and Miiller (and others) have suggested interpreting it this way.
It might be, then, that whenever the sandwich covariance matrix gives different re-
sults, it should itself be regarded as only a temporary patch. The best reaction to it,
subject to time and computaional constraints, is to look for a better model in which
the sandwich covariance matrix and the likelihood-based one would coincide.

This thought leads to an interesting question: Are there classes of models in which,
in large samples, there is little to be gained from trying to use the correct model’s like-
lihood rather than OLS plus the robust covariance matrix? This question is relevant
both because we might sometimes actually be using such models and also because
it might turn out that such models do not make sense in a given application, so that
extra effort to improve on OLS plus sandwich is expected have a large payoff.

The sandwich estimator for thisi.i.d. OLS case is often characterized as “hetroskedasticity-
robust”. It is clear that if E[u? | X;] = 0?2, so there is no heteroskedasticity that
depends on X;, the sandwich and the usual covariance estimator asymptotically co-
incide. It may therefore seem that the situation where one might as well be content
with the sandwich estimator is that in which there is conditonal heteroskedasticity,
E[u? | X¢] = 0?(X;), while the assumption from the SNLM that E[u; | X;] = X;B is
maintained. But this is incorrect.

It is an implication of the results in Chamberlain (1987) that the sandwich estima-
tor provides the efficiency bound for the OLS estimator when estimation is based
only on the assumption that E[X'y] = E[X'X]B. That is, this bound applies when the
parameter of interest 3 is the population value of the least squares fit. This does not
mean that when this moment condition is satisfied no estimator can have a lower
asymptotic variance. If, say, E[y | X] = Xp and u = y — XB | X has the double-
exponential pdf .5xe™%, a minimum absolute deviations estimator will improve on
OLS and have lower asymptotic variance. The efficiency bound means that no esti-
mator can improve on the bound without restricting the space of possible models a
priori. Or, to put it another way, any estimator that improves on the bound for some
particular model must do worse than the bound on some other model that satisfies
the moment restrictions.
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If we restrict the space of models so that they satisfy not only E[Xjy;] = E[X|X¢|B,
but also the stronger requirement that E[y; | X¢| = X, the sandwich covariance is
no longer the efficiency bound. In this case the efficiency bound is achieved by the
weighted least squares estimate, with the usual normal model estimated covariance
matrix. And in the special case where Var(y; | X;) = ¢?, the usual SNLM distri-
bution theory corresponds to the efficiency bound. In the homoskedastic case, as
Miiller points out, the efficiency bound implies that any attempt to model the dis-
tribution of disturbances can improve inference only in small samples, or else for
an a priori limited range of true distributions of the disturbances: In a large enough
sample, any general model for the disturbance distribution must converge to OLS
with the efficiency bound as covariance matrix.

But this discouraging result of limited payoff to modeling disturbances does not
correspond to any limited payoff from modeling conditional heteroskeasticity. The
efficiency bound does not imply that any attempt to model the form of ¢?(X;) must
in large samples either produce worse estimates for some possible models satis-
tying the moment restrictions or else produce the sandwich limiting distribution.
When heteroskedasticity is present, there is likely to be a gain in modeling it and us-
ing weighted least squares rather than OLS. This leaves open the possibility (which
might be worth investigating further) that there are classes of priors for the ¢(X;)
function that would produce gains in efficiency over most of a general space of ¢ ()
functions.

So do we conclude that OLS with the sandwich is always a lazy shortcut, never an
approach that an energetic Bayesian should be content with, even in large samples?
No. The assumption E[y; | X;] = X;f is restrictive, and there are conditions under
which we might not want to impose it. This is the situation in which there is a
nonlinear regression function E[y; | X¢] = f(X;), so that the residual u; = y; — X
has non-zero mean conditional on X. Here B is defined as the set of coefficients
that provide the best linear fit in predicting y; from X;. Since the true regression
function is nonlinear, we cannot determine the best linear fit from knowledge of the
nonlinear regression function f() alone; it depends also on the distribution of X;. It
is this dependence on the unknown distribution of X; that forces us to the sandwich
covariance matrix as the asymptotic efficiency bound.

Chamberlain’s original paper proved its results by starting with the case of dis-
crete joint distributions of y;, X; — that is, the case where there are only a finite
number of possible v, X; pairs, from which all sample values are drawn. Recently
Szpiro, Rice, and Lumley (2008) have provided a Bayesian dual to Chamberlain’s
result. They have shown that in a model with discretely distributed X; and possibly
nonlinear E[y; | X;], the Bayesian posterior distribution for  asymptotically takes
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on the form of a normal distribution centered at OLS with the sandwich covariance
matrix. They conjecture that the result would carry over to smoothly distributed X,
so long as the distribution is unknown and has to be estimated.

So what should we conclude about the pragmatic Bayesian attitude toward OLS
with clustered or “heteroskedasticity-consistent” standard errors? If presented with
such estimates, but not the full sample, they can be given an approximate Bayesian
interpretation by flipping the asymptotic distribution. If presented with the full sam-
ple, in a context where an estimate of f(X;) = E[y; | X;] is needed and the sandwich
covariance matrix is quite different from the SNLM’s covariance matrix around the
OLS estimate, deviations from the SNLM in two directions should be considered.
One possibility is that f() is nonlinear, in which case nonparametric regression or
expanding the parameter space to allow nonlinear terms in X; into the regression is
appropriate. In this case obviously OLS in large samples is unjustifiable. The other
possibility is that there is reason to rely on the assumption that f is linear. In that
case modeling and estimating the ¢?(X;) function and replacing OLS by weighted
least squares makes sense.

Only in the case where a nonlinear f is likely, the sample is large, and an esti-
mate of the best linear predictor for y; based on X; is needed, should a pragmatic
Bayesian conclude that, in a large sample, there is likely little return to replacing
OLS+sandwich with an explicit likelihood-based analysis. Cases where such a lin-
ear estimate is useful despite (because of the large sample) it being clear that the
estimate is biased over some ranges of X values are probably rare.

VI. CONCLUSION
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