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The Kalman Filter

Model in the form

Plant equation : st = Ast−1 + εt

Measurement equation : yt = Hst + νt .

Var(εt) = Ω, Var(νt) = Ξ. εt ⊥ νt and (εt, νt) i.i.d., independent of past
y, s.

KF: A rule for starting with a prior st ∼ N(µt, Σt), using it, plus
observation of yt+1, to update to a new distribution st+1 ∼ N(µt+1, Σt+1).
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Aside: Version with no observation error

We can relabel observation errors as elements of s, after which there
are no errors in the observation equation.

ut =

[
st

νt

]
and then rewrite the model as

ut =

[
A 0
0 0

]
ut−1 +

[
εt

νt

]
yt =

[
H I

]
ut .
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The equations as an assertion about one-step-ahead
conditional distribution

Assuming that information at time t, It, gives us

st ∼ N(µt, Σt),

the equations imply{[
st+1

yt+1

]
| It

}
∼ N

([
Aµt

HAµt

]
,
[

AΣtA′+ Ω AΣtA′H′+ ΩH′

HAΣtA′+ HΩ HAΣtA′H′+ HΩH′+ Ξ

])
.
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Linear Regression

Suppose we have a jointly normal random vector split into two pieces,
X1, X2: [

X1

X2

]
∼ N

([
µ1

µ2

]
,
[

Σ11 Σ12

Σ21 Σ22

])
.

Then familiar results about linear regression tell us that

[
X1 | X2

]
∼ N

(
β(X2− µ2) + µ1, Ω

)
β = Σ12Σ−1

22 , Ω = Σ11− Σ12Σ−1
22 Σ21 .
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KF formulas

Applying the formula for the conditional distribution of one Gaussian
random variable given another, we get

{st+1 | It+1} ∼ N(µt+1, Σt+1)

µt+1 = Aµt + (AΣtA′H′+ ΩH′)(HAΣtA′H′+ HΩH′+ Ξ)−1(yt+1− HAµt)

Σt+1 =AΣtA′+ Ω

− (AΣtA′H′+ ΩH′)(HAΣtA′H′+ HΩH′+ Ξ)−1(HAΣtA′+ HΩ)

Note that, though this looks like messy algebra, if yt is a scalar, there is
no matrix inversion involved. There is a lot of experience in using this
algorithm, so it worthwhile consulting numerical analysis literature or using
an optimized program if you want to do this with large matrices or many
times.
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Likelihood

At each date, the Kalman filter involves forming a normal distribution for
yt+1 | It. Calling the pdf of this distribution p(yt+1 | It), the pdf of the entire
observed sample of y’s is then

T

∏
t=1

p(yt | It−1)

This formula applies because we assume the information available at t
consists of the time zero information I0 plus the sequence of ys values for
s ≤ t. The Kalman filter only tells us how to derive p(· | It+1) from p(· | It)
and yt. The initial distribution p(· | I0) is determined by an initial Gaussian
prior on the initial state s0.
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The log posterior density (often imprecisely called the log likelihood,
despite the fact that it involves a prior density) is then just the sum of the
log(p(yt | It)) terms. A single one of those terms is

−n
2 log(2π)− 1

2(yt− ŷt)
′Φ−1

t (yt− ŷt)− 1
2 log |Φt| ,

where n is the dimension of y and ŷt = HAµt−1 and Φt = HAΣt−1A′H′+
HΩH′ + Ξ are the mean and variance matrix of the one-step-ahead
distribution for yt. Since these quantities are computed as part of the KF,
the log likelihood element, or the two pieces of it separately, are usually
provided, along with the filtered µt, Σt, as part of the results of the filter.

The KF assumes that A, Ω, H, and Ξ are known quantities, while in
applications they usually are not known. In applications in econometrics
usually these parameters of the KF are specified as functions of some other
underlying parameters, and the KF is executed to evaluate the posterior

7



density at many values of the underlying parameters, either as part of a
maximization routine or as part of a scheme for exploring the shape of the
posterior density.

Since the KF assumes A, Ω, H, and Ξ are known, and since the
KF operates one date at a time, it can handle time subscripts on all
these parameters. Of course if we have to estimate them, we don’t want
underlying parameters to be changing freely at every date, so the fact that
the KF allows this is not of much help. However it is quite common in
applications for Ht to be an observable matrix of exogenous variables that
changes with t.
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The Kalman smoother

• The Kalman filter: st | It for each t.

• Sometimes (e.g. guiding a spacecraft) this is what we need.

• In economics often we have a fixed data set for t = 1, . . . , T and would
like to know: st | IT for each t.

• With the results of the KF in hand, we can find these distributions
recursively, by an algorithm much like the KF, that works backwards from
the end of the sample.
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The smoother: details

• The smoother at each t uses the distribution of st+1 | IT and that of
st | It, to deliver that of st | IT.

• Initialize using the fact that the KF itself gives us sT | IT at the end of the
sample.

• Then apply the filter recursively backward from the sample’s end.

• For t = 0, we will have a distribution s0 | IT that is generally very
different from the prior s0 | I0. Other observations for small t also may
have smoothed distributions very different from the KF results, because
for these observations the smoother uses much more information than
the KF.
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The smoother: algebra

First note the joint distribution, which we have used before,[
st+1

st

]
| It ∼ N

([
Aµt

µt

]
,
[

AΣtA′+ Ω AΣt

ΣtA′ Σt

])
. (†)

From this we can see, by applying the formulas for normal conditional
distributions, that

st = µt + ΣtA′(AΣtA′+ Ω)−1(st+1− Aµt) + ζt , (∗)

where ζt ∼ N(0, Σt−ΣtA′(AΣtA′+ Ω)−1AΣt) and ζt is uncorrelated with
the past observations on y that generate It and also with st+1.
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Why ζt is uncorrelated with the entire future

• The fact that it is uncorrelated with st+1 means that it is necessarily also
uncorrelated with st+v+1 for all v > 0, because. . .

• The plant equation can be solved recursively to tell us that st+v+1 =
Avst+1 + ηt+v+1, where ηt+v+1 is a linear combination of the plant error
terms εt+1+u for u = 1, . . . , v.

• Since ζt is uncorrelated with st+1, and since εt+u+1 is uncorrelated with
any sr or yr for r ≤ t + 1, ζt, a function of st, st+1 and yv, v ≤ t, is
uncorrelated with st+1+v for v ≥ 1.
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The smoother: the formulas

• Everything on the right-hand side of (∗) is in It except st+1 and ζt.

• Therefore to find the st | IT distribution, we just use (∗), which defines
st as a linear transformation of st+1, ζt. We use the notation {st | IT} ∼
N(mt, St). The mean of ζt given IT is zero, as we have noted, and the
mean of st+1 given IT is mt+1, so plugging in to (∗) gives us

mt = µt + ΣtA′(AΣtA′+ Ω)−1(mt+1− Aµt) .

For the conditional variance, we get two components, one from the
variance St+1 of st+1 | IT, the other from the variance of ζt. Note that we
have observed that these two components of st are uncorrelated. The
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variance is therefore

St = Σt− ΣtA′(AΣtA′+ Ω)−1AΣt

+ ΣtA′(AΣtA′+ Ω)−1St+1(AΣtA′+ Ω)−1AΣt .

Here as with the formulas for the filter, you don’t need to commit the
formulas to memory. You should understand how they are derived.
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Interpreting filtered and smoothed estimates
• Even if the underlying state is not changing at all, the filtered estimate of

it will generally change a lot toward the beginning of the sample.

• Even for the smoothed states, changes reflect both estimation error and
actual movement in the state.

• Therefore, the fact that the filtered or smoothed estimates vary, even
if the variation seems economically significant, should not be naively
interpreted as implying st varies substantially over time.

• If you are trying to determine whether there is substantial time variation,
plot smoothed estimates, with their associated error bands.

• Or, using methods we will discuss later, find posterior odds on the model
with time variation vs. the model without time variation.

15



Sampling time paths of states

In MCMC sampling from the posterior density, it often is useful to sample
from the time path of the unobservable states as part of the Markov Chain.
This can be done via a backward recursion that is much like that for
smoothing.

I. Start by drawing a value of sT from the distribution of sT | IT that is
available from the Kalman filter run.

II. For each t < T, with a draw st+1 from st+1 | IT in hand, use the joint
normal distribution for (st, st+1) | It given in (†) to make a draw from
st | {It, st+1}. Since all the influence of st on later y’s and s’s is through
st+1 this is in fact a draw from st | IT
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This procedure generates a complete sequence of values for st, including
for the initial conditions. Often the initial conditions have a diffuse prior
distribution, but conditional on the data, they may nonetheless be sharply
determined.
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Application: index numbers

Suppose we have a collection of N price time series pit, measured in
logs, that we think are each made up of an unobservable general “price
level” component and an idiosyncratic component that is independent of
the general price level and of other idiosyncratic components. We would
like to use them to estimate the general price level. The equations are

pit = αi + βi p̄t + νit (1)

p̄t = γ0 + θ0 p̄t−1 + ε0t (2)

νit = γi + θiνi,t−1 + ε it , i = 1, . . . , N . (3)

ε it ∼ N(0, σ2
i ), independent across t, i . (4)
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Index numbers: setting it up in KF form

st :

{
( p̄t, νit, i = 1, . . . , N, µt) or(

p̄t, (νit, αit, γit, i = 1, . . . , N)
)

The first version will have the α’s and γ’s coefficients of the constant
µt ≡ 1. The second version instead exploits the KF’s ability to deliver
posterior means for these constant term parameters, conditional on the
other parameters, and thereby makes the dimension of an iterative posterior
density maximization problem smaller.

The measurement equation is (1). The plant equation consists of (2)-
(3), plus either a single equation stating µt = µt−1, with the prior on µ0

degenerate at µ0 = 1, or else 2N+1 equations of the form αit = αi,t−1 and
γit = γi,t−1.

19



Index number practice exercise:

Figure out what the A, H, Ω and Ξ matrices are in this problem, for both
ways of treating the constant terms.
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Application: Time-varying parameter regression

The model is

yt = Xtβt + εt

βt = Aβt−1 + νt .

The error terms εt and νt are uncorrelated across equations and across
time and are uncorrelated with Xt and with any lagged variables. Here the
state is βt, the first equation is the observation equation, and the second
equation is the plant equation. We assume yt and Xt are observable, βt

and the error terms are not.
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Time varying parameters practice exercise:

Figure out what the A, H, Ω and Ξ matrices are in this problem.
For the validity of the Kalman Filter, does it matter whether the X’s are
strictly exogenous or instead predetermined? [Reminder: For strictly
exogenous X’s, Xt and εs are uncorrelated for all t, s combinations, while for
predetermined X’s Xt and εs are uncorrelated for s ≥ t, but not necessarily
for other t, s pairs. Predetermined X’s can be lagged y’s.]
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Application: A finite order MA model

Suppose yt = a0εt + a1εt−1 with εt i.i.d. N(0, 1). If we let [εt, εt−1] be
the state vector, Then this equation becomes the observation equation and
the plant equation is [

εt

εt−1

]
=

[
0 0
1 0

] [
εt−1

εt−2

]
+

[
νt

0

]
.

Here of course νt is the same thing as εt; we only distinguish them to make
the notation line up with that of the KF.

Practice exercise: Define the state and set up the KF plant and
observation equations for an ARMA(1,1) model (i.e. a model of the form
B(L)yt = A(L)εt, with B and A both first-order polynomials). Can we treat
any of the parameters in this model as part of the state?
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