ECO 513 Fall 2015

EXERCISE ON MCMC PARTICLE FILTER

In this exercise you will conduct inference on the model
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The observables are the time series {y:}. o is unobservable. Given two initial values of
y and a distribution for the initial values of ¢}, the particle filter, or possibly even simple
sequential importance sampling, can be used to evaluate the likelihood.

Despite the fact that the particle filter gives only a more or less noisy measure of the
likelihood, its likelihood values can be used in the accept-reject rule of an MCMC chain to
provide accurate draws from the posterior on the parameters — here the &;’s, B;’s, and 2.

You are to carry out particle-filter-based MCMC posterior simulation on this model, using
as y; the quarterly inflation rate, i.e. the quarterly change in the log price level, with the price
data being the same as that used in the previous exercise on unemployment and inflation.

Assume stationarity of o3, so that parameter draws that imply non-stationarity are re-
jected. (Note that for valid MCMC, this has to be an MCMC rejection — repeat previous
draw. Otherwise the region of the parameter space bordering the non-stationary region is
undersampled by MCMC.) As the initial distribution for log 0, therefore, you can use the
steady-state unconditional distribution implied by the parameters. This ignores the fact that,
in observing the initial y values on which we are conditioning, we should in principle get
some information about the initial ¢.

As an initial value for the six free parameters, you can try

a0 al tau b0 bl b2
-0.75 0.87 0.29 0.00 0.53 0.33

These were reached after 40,000 iterations from a less-well-fitting starting point, but the
algorithm was showing a lot of serial dependence, so even starting here you may need
100,000’s of draws to get reasonable convergence, if it is even possible. Make a reasonable
effort to get convergence, and be prepared to discuss the issue at the class presentation of
the exercise.

For the jump distribution you can try the one in the supplied pfexjump () function. This
builds in the expected negative correlation between constant and sum of right-hand-side
coefficients in both equations, and tries to scale the jumps to a reasonable size. Note that
the T parameter is modeled as lognormal, so it will stay positive. (And note also that this
preserves the g(6’ | 6) = g(6 | 6’) requirement on the jump density.)
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There is working code for this problem on the course web site. As I've already noted, it
generates quite serially correlated draws, so you may be able to improve it. If you write
your own code, be particularly careful to handle the problem of “bad” parameter draws.
Since we are using the steady-state distribution of the o; process, we need |a1| < 1. And itis
possible in rare instances to get a likelihood increment so small that the weight calculation
generates NaN'’s. It can be discouraging to have the algorithm stop for this reason after tens
of thousands of draws. The supplied code does try to handle these cases correctly. When you
have converged results, or an unconverged result that is the best you can do in a reasonable
time, discuss whether it implies a forecasting rule much different from what you would get
by OLS estimates of an AR(2).

Try to use your results to generate a time series of expected values of ¢, given the whole
sample and conditioning on a parameter vector near the posterior mode. Note that the
tiltered o; draws from the particle filter are at each date reflecting information in the data up
to that date. To condition on the full sample, you will need to run one or more particle filters
with large N, and then use the ancestry matrix.



