EXERCISE ON WOLD DECOMPOSITION, ARMA MODELS

(1) In all of the models below, ε_t is i.i.d. $N(0,1)$ and y_t is a stationary process. Though they have different coefficients, not all of them define different distributions for y_t. Which pairs define identical stochastic processes?

\[
y_t = .7y_{t-1} + \varepsilon_t - .9\varepsilon_{t-1} \tag{1.1}
\]
\[
y_t = 2.9y_{t-1} - 2.8y_{t-2} + .9y_{t-3} + \varepsilon_t - 2\varepsilon_{t-1} + \varepsilon_{t-2} \tag{1.2}
\]
\[
y_t = .9y_{t-1} + \varepsilon_t - .7\varepsilon_{t-1} \tag{1.3}
\]
\[
y_t = 1.7y_{t-1} - .95y_{t-2} + .175y_{t-3} + \varepsilon_t - 1.9\varepsilon_{t-1} + 1.15\varepsilon_{t-2} - .225\varepsilon_{t-3} \tag{1.4}
\]
\[
y_t = .9y_{t-1} + \varepsilon_t \tag{1.5}
\]

(2) The stochastic process y is a finite-order moving average of the form

\[
y_t = \varepsilon_t + 1.7\varepsilon_{t-1} + .7\varepsilon_{t-1}
\]

with ε_t i.i.d. $N(0,1)$.

(a) Show that this process does not have an AR representation, even if we allow infinitely many lags.

(b) Determine the form of the best predictors of y_t based on 2, 5, and 10 lagged values of y and compare the forecast error variance of these approximations to the forecast error variance of $E[y_t \mid \{y_s, s = -\infty, \ldots, t - 1\}]$. [You’ll need to use a computer. The toeplitz functions in R and Matlab should be helpful.]

(3) Again all the models below have i.i.d. $N(0, I)$ ε processes, and in each, y is stationary. For each model, find the fundamental MAR and compare the variance of the innovation to the variance of ε.

\[
y_t = \varepsilon_t + 2\varepsilon_{t-1} + 1.1\varepsilon_{t-2} \tag{3.1}
\]
\[
y_t = \varepsilon_t - 2\varepsilon_{t-1} + .99\varepsilon_{t-2} \tag{3.2}
\]
\[
y_t = \varepsilon_t + \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix} \varepsilon_{t-1} \tag{3.3}
\]

In the first two of these, y is scalar, while in the last, both y and ε are two-dimensional.

\emph{Date:} October 14, 2009.

©2009 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained for personal use or distributed free.