
ECO 513 Fall 2005 C.Sims

MID-TERM EXAM ANSWERS

(1) Suppose a stock price pt and the stock dividend δt satisfy these equa-
tions:

pt + δt = Rpt−1 + ηt (1.1)
δt = γδt−1 + φpt−1 + εt , (1.2)

where (εt, ηt) conditional on {δs, ps|s < t} is distributed as N(0, Ω).
(a) Suppose we know R, γ, φ and Ω and have data for pt, t =

1, . . . , T but no data on δt at any date t. How could you use
the Kalman filter and/or smoother to estimate the time path of
dividends? Be specific, including discussion of how you would
handle initial conditions.
We can take the state vector to be st = [pt, δt]′. Then the two
equations above become, in matrix notation,

[
1 1
0 1

]
st =

[
R 0
φ γ

]
st−1 +

[
ηt
εt

]
,

or
Γ0st = Γ1st−1 + ξt .

This becomes a standard state equation if we premultiply by
Γ−1

0 , i.e.

st = Ast−1 + ζt , with

A = Γ−1
0 Γ1

Var(ζt) = Γ−1
0 Ω(Γ−1

0 )′ .

The observation equation is then yt = Hst with H = [1 0].
Application of the Kalman filter is now standard and would
deliver a time series of estimates of the unobservable compo-
nent of the state, δt. These would be partial-sample estimates,
however, and to obtain estimates reflecting information in the
full sample we would need to run the Kalman smoother. The
Kalman filter only describes how to update a distribution based
on new information. We have to start with a distribution for
s0, the pre-sample state. One natural choice is the unconditional
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distribution implied by the model, assuming that the system ad-
mits a stationary distribution. For a dividend and stock price
series, though, this might be unrealistic. Companies often grow
steadily, or decline and go out of existence. So in this case it
might be reasonable to postulate a very dispersed initial joint
distribution for s0, perhaps choosing the covariance matrix so it
implies E[δ0 | P0] = (R− 1)P0. There is no unique right answer
to this initial conditions part of the question, though there are
also many possible bad answers.

(b) Suppose that for two dates in the middle of the sample there is
no data at all, though at all other dates there is data on pt and
not on δt, as before. Explain how to estimate both the time path
of δt and the missing values of pt using the Kalman filter.
Missing observations are easy to handle with the Kalman filter.
These are just instances of observations in which H, the coeffi-
cient matrix in the observation matrix, happens to be zero. The
Kalman filter has no trouble with H varying between the usual
[1 0] form and a [0 0] form. At each step of the Kalman filter, a
conditional mean of the state is formed, so these are estimates of
the missing values of pt. And as in the previous part, for many
purposes we would want to use smoothed estimates to get the
most accurate possible estimate of the missing values of pt.

(c) How could you form estimates of γ, φ, R and Ω using these data
on p?
The Kalman filter delivers the value of the pdf of the data for
every set of values for the parameters listed. We could then
maximize this likelihood value by using a hill-climbing algo-
rithm that varies the parameters trying to find a likelihood peak.
We could also use a prior over the parameters. Then we would
multiply the likelihood value by the prior pdf at each parameter
vector value to form the maximand for the hill-climbing routine.
Finally, it would probably be best to form a posterior mean us-
ing some MCMC method rather than being satisfied with modal
values of the posterior or likelihood. One way to do this rela-
tively efficiently is to use the Kalman-filter-like backward recur-
sion we discussed in class to sample from the distribution of the
state vector for each parameter vector value. Then for each fixed
state vector sequence the whole model becomes a pair of linear
simultaneous equations. Because of the simultaneity, sampling
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from this posterior is not trivial. An answer that recognized this
was a good one.

(2) For each of these moving average models, in which in each case εt is
i.i.d. N(0, 1), determine whether the representation is fundamental,
and if it is not display the fundamental representation and determine
the variance of the innovation.
(a) xt = εt − 1.1εt−1 + 1.21εt−2

This is obviously not fundamental, as its last coefficient exceeds
the first. The two roots of the C(L) MA polynomial are (1 ±√

3i).5/1.1, which both have absolute value 1/1.1 < 1. Since
both have to be inverted to arrive at the fundamental MA oper-
ator, it is therefore

1− 1
1.1

L +
1

1.21
L2 .= 1− .9091L + .8263L2 .

The innovation has to be scaled up by 1.12 and its variance is
therefore 1.212 = 1.331.

(b) xt = εt − 1.5εt−1 + .5625εt−2
Here there are two stable roots of 4/3. So the representation is
fundamental.

(c) xt = εt − εt−1 − 1.21εt−2 + 1.21εt−3
This polynomial can be factored as (1− 1.21L2)(1− L). The sec-
ond factor, having a root on the unit circle, is ok. The first has
two roots, ±1/1.1), both of which have to be inverted. The re-
sult will be

(
1− 1

1.21
L2

)
(1− L) = 1− L− .8263L2 + .8263L3 .

The innovation variance then has to be scaled up by the factor
1.212 = 1.331.

(d) xt = εt − 2.5εt−1 + εt−2
One root is .5, the other 2. The fundamental representation MA
operator is 1− L + .25L2 and the innovation variance has to be
scaled up by 22 = 4.



4 EXAM ANSWERS

(3) Suppose our model is

yt = εt + αεt−1, t = 1, . . . , T (3.1)

εt ∼ N(0, σ2), i.i.d. for t = 0, . . . , T (3.2)

εt independent of {yt−s, s > 0} , all t. (3.3)

Our prior pdf for α is uniform on (−1, 1) and for σ2 it is the pdf
e−σ2

dσ2 on the positive real line.
(a) Show the expression for prior times likelihood for this setup,

treating ε0 along with α and σ2 as unknown parameters.
The pdf is

ϕ(ε0; σ2) · (.5) · I(−1,1)(α) exp(−σ2)
∞

∏
t=1

ϕ(yt − αεt−1; σ2) , (∗)

where ϕ(x; ν2) is the pdf of a normal distribution with variance
ν2 and I(a,b)(x) is the indicator function for x being in the inter-
val (a, b).

(b) A quick method for estimating this model that is sometiems pro-
posed is to set ε0 = 0, then estimate α and σ2 by “iterated OLS”.
This is possible because once we know εt−1 we can construct εt
as yt − αεt−1 for each t. So we can start with an initial guess
of α, construct corresponding ε’s, estimate (3.1) by OLS to get
a new α, construct a new ε sequence, etc. until we get conver-
gence. At the end we will have not only estimates of α and σ2,
but, using the usual OLS formulas, a “posterior distribution” for
α, σ2 constructed as if the artificially constructed sequence of εt’s
were real data and this was indeed a standard linear regression
model. The resulting posterior for α and σ2 is “Normal-inverse-
gamma”, a standard form it is easy to sample from.

Explain how you could use this incorrect but perhaps not crazy
posterior distribution for α and σ2, together with the model’s
N(0, σ2) distribution for ε0, to generate an independence Metropolis-
Hastings MCMC sample from the correct posterior distribution
on α, σ2 and ε0. Let

s1 =
T−1

∑
t=0

u2
t (α̂)
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s2 =
T

∑
t=1

u2
t (α̂)

α̂ = ∑T
t=1 yt ε̂t−1

s1
ε̂t = yt − α̂ε̂t−1 t ≥ 1
ε̂0 = 0 .

The last three equations state that α̂ is the OLS estimator for α in
a regression of yt on ε̂t−1, while at the same time ε̂t is the resid-
ual when α̂ is used to form the residual. The iterations described
above converge when the last three equations hold simultane-
ously.

The independence M-H procedure goes as follows: Start with
α, σ2 values, possibly the converged estimates described above.
Draw ε0 from a N(0, σ2) distribution. Draw a new σ2 from the
inverse-gamma distribution implied by the “regression”, i.e. an
inverse gamma with scale parameter s2 and degrees of freedom
T − 1. Draw a new α from the normal distribution implied by
the regression equation as the conditional distribution of α | σ2,
i.e. a N(α̂, (s2/s1)/T). Then decide whether to keep or reject
this draw by forming the ratio of the true likelihood displayed
in (∗) to the false pdf

φ(ε0; σ2)σ−2(T−1) exp(−s1/σ2)φ(α̂, (s1/s2)/T) .

This ratio has to be compared to its value for the previous pa-
rameter values. If the ratio exceeds the previous value, the new
draw is kept. If it is below the previous value, the new value
is kept with probability equal to the ratio of the current ratio to
the previous ratio, and if the new value is not kept the previous
parameter values are repeated in the artificial sample.


