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MULTIVARIATE ARMA, KALMAN FILTER

1. THE FINITE MA CLASS OF MODELS

yt =
k

∑
s=0

asεt−s = a(L)εt .

y may be m× 1, in which case as is m× m. ε ∼ N(0, Σ), i.i.d. Or sometimes just
mean 0, variance Σ, not serially correlated.

Properties:
• Dense in the space of LR stationary processes.
• Closed under taking linear combinations.
• Closed under taking subvectors.
• To keep uniqueness, must restrict parameter space to fundamental MA’s.

This restriction (on roots) is quite nonlinear. But the fundamental MA’s
form a closed set with open interior, since roots are continuous functions
of parameters.

2. IS THE SET OF FUNDAMENTAL MA OPERATORS CONVEX?

This is an important point, since if it is convex, then iterative methods for maxi-
mizing likelihood subject to the constraint are likely to work well, because concave
functions over a convex set have a unique maximum, while with a non-convex
constraint set there can be multiple boundary maxima, even for concave functions.

For second-order operators, the set is convex. There is a famous diagram show-
ing the set of values of ρ1 and ρ2 for which the roots of 1 + ρ1z + ρ2z2 all lie on or
outside the unit circle, shown in Figure 1. This is obviously a convex region.

However, beyond two dimensions the region is no longer convex. For example,
consider P(L) = 1− 3L + 3L2 − L3 and Q(L) = 1 + L. The first has three roots,
all 1. The second has one root of -1. An equal weighted linear combination of the
two, 1− L + 1.5L2 − .5L3 has a pair of complex roots with absolute value .89, and
one real root of 2.5. So the region is not convex for third order polynomials.

3. THE FINITE AR CLASS OF MODELS

yt =
k

∑
s=1

bsyt−s + εt, or b(L)yt = εt .
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FIGURE 1. ρ1, ρ2 values yielding invertible 1 + ρ1L + ρ2L2

ε ∼ N(0, Σ), or sometimes just mean 0, variance Σ, not correlated with past y’s,
and therefore not serially correlated.

Properties:
• Dense in the space of LR stationary processes, plus includes some types

of non-stationary processes
• Not closed under taking linear combinatoins
• Not closed under taking subvectors.
• No uniqueness problem. Every set of real numbers used to populate bs,

s = 1, . . . , k results in a distinct model. Restrictions like that to obtain
fundamental MA’s if we want to consider only stationary models. But
this restriction is not needed to prevent redundancy.

4. FINITE-ORDER ARMA MODELS

B(L)yt = A(L)εt ,

where εt ⊥ {ys, s < t} (and εt is therefore the innovation in y at t) and B and A are
finite-order polynomials in L, perhaps with matrix-valued coefficients.

Properties:
• Contains MA and AR models, so is also dense in the LR class of models.
• Closed under taking linear combinations.
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• Like the finite-order AR class, contains non-stationary as well as station-
ary models.

• Has the same problems as the MA class with possible redundancy in the
A(L) parameter space.

• Has the same problem as the AR class with the restrictions on B(L) needed
if we want to restrict to stationary models.

• Has its own special, severe problem of non-uniqueness, because of possi-
ble cancellation between AR and MA roots.

Practice exercise: Suppose yt = .7yt−1 + εt, zt = .9zt−1 + νt, where εt and νt are
i.i.d. N(0, I) and are uncorrelated with all ys, zs for s < t. (This makes them the
innovations in the joint y, z process, of course.) Find the fundamental univariate
MA representation for xt = yt + zt. [Hint: This will take the form (P(L)/Q(L))ηt,
where ηt is the univariate innovation in xt. Form the acf of x, as a ratio of polyno-
mials in the lag operator, and then factor to get expressions in positive powers of
L with no roots inside the unit circle.]

5. THE KALMAN FILTER

Model in the form

st = Ast−1 + εtPlant equation:
yt = Hst + νt .Measurement equation:

Var(εt) = Ω, Var(νt) = Ξ. εt ⊥ νt and (εt, νt) i.i.d., independent of past y, s.
KF: A rule for starting with a prior st ∼ N(µt, Σt), using it, plus observation of

yt+1, to update to a new distribution st+1 ∼ N(µt+1, Σt+1).
Note that the tradition of having a separate error term νt in the observation equa-

tion is unnecessary. We can relabel any such shocks as elements of s, after which
there are no errors in the observation equation. That is, we can define

ut =
[

st
rt

]

and then rewrite the model as

ut =
[

A 0
0 0

]
ut−1 +

[
εt
νt

]

yt =
[
H I

]
ut .

{[
st+1
yt+1

]
| It

}
∼ N

([
Aµt

HAµt

]
,
[

AΣt A′ + Ω AΣt A′H′ + ΩH′
HAΣt A′ + HΩ HAΣt A′H′ + HΩH′ + Ξ

])
.
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Applying the formula for the conditional distribution of one Gaussian random
variable given another, we get

{st+1 | It+1} ∼ N(µt+1, Σt+1)

µt+1 = Aµt + (AΣt A′H′ + ΩH′)(HAΣt A′H′ + HΩH′ + Ξ)−1(yt+1 − HAµt)

Σt+1 =AΣt A′ + Ω

− (AΣt A′H′ + ΩH′)(HAΣt A′H′ + HΩH′ + Ξ)−1(HAΣt A′ + HΩ)

Note that, though this looks like messy algebra, if yt is a scalar, there is no matrix
inversion involved. It is worthwhile consulting numerical anlaysis literature or
using an optimized program if you want to do this with large matrices or many
times.

6. DATA DENSITY

At each date, the Kalman filter involves forming a normal distribution for yt+1 |
It. Calling the pdf of this distribution p(yt+1 | It), the pdf of the entire observed
sample of y’s is then

T

∏
t=1

p(yt | It−1)

This formula applies because we assume the information available at t consists of
the time zero information I0 plus the sequence of ys values for s ≤ t. The Kalman
filter only tells us how to derive p(· | It+1) from p(· | It) and yt. The initial
distribution p(· | I0) is determined by an initial Gaussian prior on the initial state
s0.

7. LIKELIHOOD

The log posterior density (often imprecisely called the log likelihood, despite the
fact that it involves a prior density) is then just the sum of the log(p(yt | It)) terms.
A single one of those terms is

− 1
2(yt − ŷt)′Φ−1

t (yt − ŷt)− 1
2 log |Φt| ,

where ŷt = HAµt−1 and Φt = HAΣt−1A′H′ + HΩH′ + Ξ are the mean and vari-
ance matrix of the one-step-ahead distribution for yt. Since these quantities are
computed as part of the KF, the log likelihood element, or the two pieces of it sep-
arately, are usually provided, along with the filtered µt, Σt, as part of the results of
the filter.
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8. THE KALMAN FILTER ESTIMATES STATES, NOT “PARAMETERS”

The KF assumes that A, Ω, H, and Ξ are known quantities, while in applications
they usually are not known. In applications in econometrics usually these parame-
ters of the KF are specified as functions of some other underlying parameters, and
the KF is executed to evaluate the posterior density at many values of the underly-
ing parameters, either as part of a maximization routine or as part of a scheme for
exploring the shape of the posterior density.

Since the KF assumes A, Ω, H, and Ξ are known, and since the KF operates one
date at a time, it can handle time subscripts on all these parameters. Of course if we
have to estimate them, we don’t want underlying parameters to be changing freely
at every date, so the fact that the KF allows this is not of much help. However it
is quite common in applications for Ht to be an observable matrix of exogenous
variables that changes with t.

9. THE KALMAN SMOOTHER

• Kalman filter: the distribution for st | It for each t. If we are making a
decision in real time at each t, this is exactly what we need.

• But we are often looking at historical data to gain insight about parameter
values and about past events. Then we want the distribution of st | IT,
where T is the end of the sample.

• With the Kalman filter results in hand, this can be done recursively. The
distribution of sT | IT is delivered by the Kalman filter. The smoother at
each t uses the distribution of st+1 | IT and that of st | It, to deliver that
of st | IT.

• When we are done, we have a posterior distribution even for s0 | IT, that
will be different from the prior on s0.

10. SMOOTHER FORMULAS

[
st+1

st

]
| It ∼ N

([
Aµt
µt

]
,
[

AΣt A′ + Ω AΣt
Σt A′ Σt

])
.

Applying the formulas for normal conditional distributions,

(∗) st = µt + Σt A′(AΣt A′ + Ω)−1(st+1 − Aµt) + ζt ,

where ζt ∼ N(0, Σt−Σt A′(AΣt A′+ Ω)−1AΣt) and ζt is uncorrelated with the past
observations on y that generate It and also with st+1. But the fact that it is uncor-
related with st+1 means that it is necessarily also uncorrelated with st+v+1 for all
v > 0. This follows from the fact that the plant equation can be solved recursively
to tell us that st+v+1 = Avst+1 + ηt+v+1, where ηt+v+1 is a linear combination of
the plant error terms εt+1+u for u = 1, . . . , v. Since ζt is uncorrelated with st+1, and
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since εt+u+1 is uncorrelated with any sr or yr for r ≤ t + 1, ζt, a function of st, st+1
and yv, v ≤ t, is uncorrelated with st+1+v for v ≥ 1.

With this reasoning in hand, we can see that all we need do now is replace st+1 in
(∗) by its conditional distribution given IT, since everything else on the right-hand
side is in It. If we use the notation {st | IT} ∼ N(mt, St), we therefore have

mt = µt + Σt A′(AΣt A′ + Ω)−1(mt+1 − Aµt)

St =Σt − Σt A′(AΣt A′ + Ω)−1AΣt

+ Σt A′(AΣt A′ + Ω)−1St+1(AΣt A′ + Ω)−1AΣt .

Here as with the formulas for the filter, you don’t need to commit the formulas to
memory. You should understand how they are derived.

11. FILTERING VS. SMOOTHING IN PRACTICE

Even if the underlying state is not changing at all, the filtered estimate of it will
generally change a lot toward the beginning of the sample. Usually the prior is not
very informative, so the distribution for the state changes strongly in response to
the arrival of the initial data, then settles down a the sample lengthens. If this is
happening, the smoothed estimates of the state will not show the rapid changes at
the start of the sample, since they are using the full information set to estimate the
state at every date.

If changes in st are the focus of interest, therefore, it is very important to use
smoothed estimates of the state in interpreting changes in the estimated state.
Also, even for the smoothed states, changes reflect both estimation error and ac-
tual movement in the state. Plots of smoothed estimates of the state should show
standard error bands around the estimates, to give an idea of how much of the
plotted movement might be due to estimation error.

12. APPLICATION: INDEX NUMBERS

Suppose we have a collection of N price time series pit, measured in logs, that we
think are each made up of an unobservable general “price level” component and
an idiosyncratic component that is independent of the general price level and of
other idiosyncratic components. We would like to use them to estimate the general
price level. The equations are

pit = αi + βi p̄t + νit

p̄t = γ0 + θ0 p̄t−1 + ε0t

νit = γi + θiνi,t−1 + εit

ε parameters are i.i.d. across time. They are independent across equations and
independent of all lagged variables. Their variances, σ2

i , may differ across equa-
tions.
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To set this up as a KF problem, take the state to be p̄t together with νit, i =
0, . . . , N and a constant. We can either use a single constant that is always 1, or
else treat the α and γ coefficients as part of the state. The former keeps the KF
simpler. The latter exploits the KF’s ability to deliver posterior means for these
constant term parameters, conditional on the other parameters, and thereby makes
the dimension of an iterative posterior density maximization problem smaller.

The measurement equation is the first listed. The plant equation consists of the
next two, plus either a single equation stating ut = ut−1, with the prior on u0
degenerate at u0 = 1, or else 2N+1 equations of the form αit = αi,t−1 and γit =
γi,t−1.

Practice exercise: Figure out what the A, H, Ω and Ξ matrices are in this problem,
for both ways of treating the constant terms.

13. APPLICATION: TIME-VARYING PARAMETER REGRESSION

The model is

yt = Xtβt + εt

βt = Aβt−1 + νt .

The error terms εt and νt are uncorrelated across equations and across time and
are uncorrelated with Xt and with any lagged variables. Here the state is βt, the
first equation is the observation equation, and the second equation is the plant
equation. We assume yt and Xt are observable, βt and the error terms are not.

Practice exercise: Figure out what the A, H, Ω and Ξ matrices are in this problem.
For the validity of the Kalman Filter, does it matter whether the X’s are strictly ex-
ogenous or instead predetermined? [Reminder: For strictly exogenous X’s, Xt and
εs are uncorrelated for all t, s combinations, while for predetermined X’s Xt and εs
are uncorrelated for s ≥ t, but not necessarily for other t, s pairs. Predetermined
X’s can be lagged y’s.]

14. APPLICATION: A FINITE ORDER MA MODEL

Suppose yt = a0εt + a1εt−1 with εt i.i.d. N(0, 1). If we let [εt, εt−1] be the state
vector, Then this equation becomes the observation equation and the plant equa-
tion is [

εt
εt−1

]
=

[
0 0
1 0

] [
εt−1
εt−2

]
+

[
νt
0

]
.

Here of course νt is the same thing as εt; we only distinguish them to make the
notation line up with that of the KF.

Practice exercise: Define the state and set up the KF plant and observation equa-
tions for an ARMA(1,1) model (i.e. a model of the form B(L)yt = A(L)εt, with B
and A both first-order polynomials). Can we treat any of the parameters in this
model as part of the state?


