ANSWERS TO ARMA FIT EXERCISE

The optimized estimates for the three models are shown below. As was mentioned in class, the exponential prior on $1 / \sigma^{2}$ turned out to imply almost no probability on values of σ^{2} as low as the sample forecast variance that can easily be obtained even with very simple models. So the columns corresponding to that prior has unrealistically high estimated residual variance. It is also only in these columns that there is a substantial moving average coefficient. All the models show one estimated root very close to one. The modal log posterior values are possibly not comparable across models. Because of the use of the "factor proportional to a $N\left(0, \sigma^{2}\right) \operatorname{pdf}$ for $\bar{y} \cdot\left(\sum \rho_{i}-1\right)-\alpha$ ", the prior has a normalizing factor that is not accounted for in these results and might differ somewhat across models with different numbers of AR lags. It is nonetheless clear that the models with the $1 / \sigma^{2}$ prior are dominated in fit by the ones with the exponential prior, as might be expected. The models with the exponential prior are all within a range of 2.5 natural log units in maximum posterior pdf value, which means that there is little difference between them in fit. Differences of this magnitude might easily disappear if the normalizing constant is accounted for properly or if the prior were to change slightly, say by using different variances on the lagged ρ^{\prime} s.

Results for ARMA $(5,1)$

	exp'l prior on $1 / \sigma^{2}$	exp'l prior on σ^{2}
ρ_{1}	0.9730576	1.378733653
ρ_{2}	0.0615118	-0.304253967
ρ_{3}	-0.0335163	-0.153651609
ρ_{4}	-0.0101222	-0.001016871
ρ_{5}	0.0080348	0.079394094
α	0.0167614	0.012402301
θ	0.1650601	-0.088899098
σ^{2}	0.0091286	0.000075938
$\sum \rho$	0.998986	0.9992053
\log posterior pdf	-412.362	-923.163

[^0]
Results for AR(5)

	exp'l prior on $1 / \sigma^{2}$	OLS	exp'l prior on σ^{2}
ρ_{1}	1.12085676	1.29586028	1.29391029
ρ_{2}	-0.04892733	-0.19771312	-0.19399753
ρ_{3}	-0.06653617	-0.17004820	-0.16854483
ρ_{4}	-0.01791756	-0.01830424	-0.01585762
ρ_{5}	0.01162761	0.08922339	0.08362628
α	0.01412293	0.01451564	0.01341182
σ^{2}	0.00912834	0.00007625	0.00007593
$\sum_{\rho} \rho$	0.9991033	0.9990181	0.9991366
\log LH at \max			-924.4888

Results for ARMA $(\mathbf{4}, \mathbf{1})$

	$\exp \left(-1 / \sigma^{2}\right) / \sigma^{4}$ prior	$\exp \left(-\sigma^{2}\right)$ prior
ρ_{1}	0.97903216928921	$1.348614 \mathrm{e}+00$
ρ_{2}	0.04897836498979	$-2.724487 \mathrm{e}-01$
ρ_{3}	-0.02410658883885	$-1.759705 \mathrm{e}-01$
ρ_{4}	-0.00493252498719	$9.904819 \mathrm{e}-02$
α	0.01663006071991	$1.182957 \mathrm{e}-02$
θ	0.16119425533512	$-4.926028 \mathrm{e}-02$
σ^{2}	0.00912885823666	$7.650896 \mathrm{e}-05$
\log posterior	-411.0938	-921.9466

Forecasts with the AR5 and ARMA $(4,1)$ and $\operatorname{ARMA}(5,1)$ models are shown in the plots below. All of the forecasts revert rather quickly to a steady state growth rate of 2.8% at an annual rate and follow similar paths.

ARMA(4,1) growth forecasts

Growth rate forecasts, OLS and (in green) posterior model

ARMA(5,1) and ARMA(4,1) growth forecasts

[^0]: Date: November 23, 2006.
 (C) 2006 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained for personal use or distributed free.

