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Measurable functions

A function f : S 7→ Rk is F -measurable if and only if for every open set
B in Rk, f−1(B) is in F .

Note that this looks much like one definition of a continuous function —
for f to be continuous, it must be that f−1(B) is open for every open B. So
continuous functions are always measurable with respect to the Borel field.
Example 1. S = {1, 2, 3, 4, 5}. F generated by {1, 3} , {2, 4}. F consists
of ∅, {1, 3} , {2, 4} , {1, 3, 5} , {2, 4, 5} , {5} , {1, 2, 3, 4, 5}. Then the identity
function f(ω) = ω is not F -measurable, but the function f(ω) = ω mod2
(i.e. f is 1 for odd arguments, 0 for even arguments) is F -measurable.

A function integrable w.r.t. a measure µ defined on a σ-field F is an
F -measurable function f for which

∫
fdµ is finite.
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Conditional expectation

Suppose we have a probability triple (S,F , P ) and in addition another
σ-field G contained in F . If f is a P -integrable function, then it has a
conditional expectation with respect to G, defined as a G-measurable
function E[f | G] such that

(∀A ∈ G)
∫

A

f(ω)P (dω) =
∫

A

E[f | G](ω)P (dω) .

Note that

• The conditional expectation always exists.

• It is not unique, but two such conditional expectation functions can differ
only on a set of probability zero.
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• Common special case 1: S = R2, F is the Borel field on it, and points in
S are indexed as pairs (x, y) of real numbers. G is the σ-field generated
by all subsets of S of the form {(x, y) | a < x < b}, where a and b are
real numbers. In this case sets in G are defined entirely in terms of
restrictions on x, with y always unrestsricted. A G-measurable function
will be a function of x alone, therefore. In this case, we would usually
write E[f(x, y) | x] instead of the more general notation

E[f(x, y) | G](x) .

• Common special case 2: G is the σ-field generated by the single subset
A of S. (I.e., {∅, A, Ac, S}). Then a G-measurable function must be
constant on A and also constant on Ac. The value of E[f | G](ω) for
ω ∈ A then is what is usually written as E[f | A].
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Stochastic processes

Definition 1. A stochastic process is a probability measure on a space of
functions {Xt} that map an index set K to Rn for some n. The index set is
R, or some subset of it.

Stochastic processes with R or R+ as index set are called continuous-
time processes. Those with Z or Z+ as index set are called discrete-time
processes.

An ordinary random vector X = {Xi, i = 1, . . . , k} with values in Rk is
a special case of a discrete time process. Instead of Z as an index set, it
has the finite set of integers 1, . . . , k as index set.

There are generalizations of this idea. If the index set is a subset of R2,
we have a spatial process. These are useful in analysis of data that may
vary randomly over a geographical region.
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Probability-triple defnition

An ordinary random variable X is defined as an F -measurable function
X(ω) mapping S from a probability space (S,F , P ) to the real line. That
is X : S 7→ R. A random vector is X : S 7→ Rk. A one-dimensional
continuous time stochastic process is formally X : S 7→ RR, and a one-
dimensional discrete-time process is formally X : S 7→ RZ.

This formalism, with the underlying space S, allows us to consider
many different random variables and stochastic processes on the same S,
and thus to model stochastic relationships among processes and random
variables.

If we are dealing only with a single discrete (say) stochastic process, it
is easier to take S to be RZ itself, so that the function on S defining the
process is just the identity function.
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σ-fields for stochastic processes

• Our definition of a measurable function assumes that we have a well
defined class of open sets on the space in which the function takes its
values. For ordinary random variables and vectors, taking their values in
Rk, the open sets are the obvious ones.

• What is the class of open sets in RR or RZ? There is no unique way to
choose open sets in these spaces. The standard class of open sets in
these spaces for our purposes is the cylinder sets. These are sets of
the form {

X ∈ RK | Xt ≤ a
}

,

where t is some element of K and a is an element of R (for a one-
dimensional process).

6



Filtrations
• On a probability space (S,F , P ), a filtration is a class {Ft} of σ-fields

indexed by the index set K such that for each s < t ∈ K, Fs ⊂ Ft and
Ft ⊂ F for all t ∈ K.

• The interpretation of a filtration is that Ft is the collection of all events
that are verifiable at t. The increase in the size of Ft as t increases
reflects the accumulation of information over time.

• A common example of a filtration: We have a stochastic process {Xt}
defined on (S,F , P ) and we define Ft to be the σ-field generated by
inverse images of sets of the form Xs(ω) < a for any real number a and
any s ≤ t. Then events in Ft can be verified to have occurred or not by
observation of Xs for s ≤ t. Ft can be thought of as the class of events
verifiable at time t by observation of the history of Xs up to time t. An
Ft-measurable random variable is then a function of the history of X up
to time t.
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Prediction

• Combining the notion of a filtration with that of a conditional expectation,
we can form

E[Z | Ft] = Et[Z] .

• These are two notations for the same thing. Both are “the conditional
expectation of Z given information at t”. The latter notation is a
shorthand used when there is only one filtration to think about.

• When Ft is defined in terms of the stochastic process X as in the
previous section, there is a third common notation for this same concept:

E[Z | {Xs, s ≤ t}] .

• When the random variable Z is Xt+v for v > 0, then E[Xt+v | Ft] is the
minimum variance v-period ahead predictor (or forecast) for Xt+v.
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The i.i.d. Gaussian processes

• There is a second, equivalent, way to define a stochastic process.
Specify a rule for defining the joint distribution of the finite collection of
random variables {Xt1, . . . , Xtn} for any set of elements t1, . . . , tn of K.

• Of course the joint distributions have to be consistent. For example, I
can’t specify that {X1, X2} form N(0, I) random vector, while {X2, X4}
form a N(0, 2I) random vector, since the variances of X2 in the two
distributions conflict.

• A simple stochastic process that is a building block for many others: {Xt}
are i.i.d. N(0, 1) for t ∈ Z. Or, more generally, {Xt} are i.i.d. N(0, I)
random vectors.
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Gaussian MA processes

• A useful class of processes: Let {ai, i = −∞, . . .∞} be a set of real
n × n matrices, let {εt} be an n-dimensional i.i.d. N(0, I) process, and
define

Xt =
∞∑

i=−∞
aiεt−i .

• We know finite linear combinations of normal variables are themselves
normal. So long as

∑
aia

′
i < ∞,

lim
k,`→∞

∑̀
−k

aiεt−i

is well defined both as a limit in probability and a limit in mean square
and is normal.
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• Then any finite collection of Xti
’s, i = 1, . . . ,m, is jointly normal, as it

consists of linear combinations of normal variables.

•
Cov(Xt, Xs) =

∞∑
v=−∞

ava
′
v+s−t .

• Here we are treating ai as defined for all i, positive or negative, but with
ai = 0 except for 0 ≤ i ≤ k.
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Stationarity; The autocovariance function

• Note that for these Gaussian MA processes, Cov(Xt, Xs) depends only
on t − s. That is, it depends only on the distance in time between the
X ’s, not on their absolute location in time. We write

Cov(Xt, Xt−v) = RX(v)

and call RX the autocovariance function (sometimes abbreviated acf)
for X.

• Note that RX(s) = RX(−s)′. Of course if m = 1, this becomes RX(s) =
RX(−s).
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• Since this is a Gaussian process, its covariances (and mean, always
zero) fully determine its joint distributions. A process that, like this one,
has the property that for any {t1, . . . , tn} ⊂ K and any s ∈ K, the joint
distribution of Xt1 . . . Xtn is the same as that of {Xt1+s, . . . , Xtn+s}, is
called a stationary process.
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Qualitative behavior of MA processes

• Time paths of MA processes tend to be qualitatively similar to {as},
considered as a function of s.

• If the a’s are all of the same sign and smooth, the time paths of X will
tend to be smooth. If the a’s oscillate, the X ’s will tend to oscillate, and
at about the same frequency.
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Uniqueness for RX, for a?
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The fundamental MA representation
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The likelihood for an MA process
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