
(1) Here is a plot to answer the question. Points labeled A are admissible. Points
labeled B are Bayesian. If randomization were allowed, all points on the line
shown connecting the two Bayesian points would be admissible, and all the points
labeled A that lie above the line would become inadmissible.
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(2) Suppose we have i.i.d. observations on {xt, t = 1, . . . , T}, with each xt dis-
tributed as N(µ, µ2). That is, µ is both the mean and the standard deviation
of the observations. It is known that µ > 0. This exercise compares Bayesian
with frequentist methods of constructing point estimates and interval esti-
mates for µ.
(a) Show that ∑ xt/T and ∑ x2

t form a two-dimensional sufficient statistic
here.
The pdf of the sample can be written as

(2π)−T/2 exp

(
− 1

2

T

∑
1

(
x2

t
µ2 −

2xt

µ
+ 1

))
,

from which it is clear that the likelihood function depends on the data only
through the two proposed sufficient statistics.

(b) Show that x̄ = ∑ xt/T is an unbiased and consistent estimator for µ.
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It is a standard result that for i.i.d. N(η, σ2) variables, x̄ ∼ N(µ, σ2/T). This
implies x̄ is unbiased and, since σ2 is a constant, that the variance of x̄ goes
to zero as T → ∞. This in turn implies that x̄ converges in quadratic mean
to µ and (therefore) also in probability.

(c) Show that s2 = ∑(xt − x̄)2/T is an unbiased estimator for µ2 and that its
square root is a consistent estimate of µ.
The assertion in this question is not quite correct. E[s2] = µ2(T − 1)/T. To
make it unbiased for µ2 we have to multiply it by T/(T − 1) (or just define
it with T − 1 in the denominator). It is another standard result from normal
sampling theory that ∑(xt − x̄)2/σ2 ∼ χ2(T − 1). The variance of a χ2(T)
distribution is T, so the variance of χ2(T)/T is 1/T and therefore s2 P−→ σ2.

Since for any continuous function f , xt
P−→ z ⇒ f (xt)

P−→ f (z),
√

s2 P−→ µ.
(d) Show that x̄/µ and s2/µ2 are what is known as pivotal quantities, or

just plain pivots, meaning that they each have a distribution that does
not depend on the unknown parameter µ. Show also that the two are
independent for each µ.
Since x̄ ∼ N(µ, µ2/T), x̄/µ ∼ N(1, 1/T). And it is a standard result that
Ts2/µ2 (with our definition of s2) is χ2(T − 1). That these two quantities are
independent across repeated samples with µ fixed is again a standard result.
To prove it, though, note that

~x− x̄ = (I − (1/T) 1
T×T

)~x .

Here 1 stands for a matrix full of ones. If we use M to denote the factor
multiplying ~x on the right of this expression, we have

E[(~x− x̄)(x̄− µ)] = E[M~x
1
T

(~x′ 1
T×1

− µ)]

=
1
T

M(µ 1
T×T

+ µ2 1
T×1

− µ2 1
T×1

) = 0 ,

since it easily checked that M 1
T×1

= 0.

(e) Derive the form of three confidence intervals, based on x̄/µ, on s2/µ2,
and on ∑ x2

t /µ2 (which is also pivotal).

√
T

(
x̄
µ
− 1

)
∼ N(0, 1)

∴ P
[
−1.96 <

√
T

(
x̄
µ
− 1

)
< 1.96

]
= .5

∴ P
[

1− 1.96√
T

<
x̄
µ

< 1− 1.96√
T

]
= .95
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What kind of an interval this gives depends on T and on the sign of X̄. In our
case below, T = 3, so 1− 1.96/

√
T < 0. This means that only one side of

the interval on x̄/µ binds. If x̄ > 0, the interval is (x̄/(1.96/
√

T + 1), ∞),
while if x̄ < 0 the interval is (x̄/(1− 1.96/

√
T), ∞).

T
s2

µ2 ∼ χ2(T − 1)

∴ T = 3 ⇒ P
[

.05064 < T
s2

µ2 < 7.378
]

= .95

∴ T = 3 ⇒ P
[

Ts2

7.378
< µ2 <

Ts2

.05064

]
= .95 .

Most applications of the χ2 distribution to frequentist testing use just the right
tail. Here we use left and right tails because it seems reasonable to consider
µ’s that are too large as well as µ’s that are too big. But there is no right an-
swer to which tail or tails to use, unless one is explicit about what alternative
hypotheses one has in mind.

∑ x2
t

µ2 ∼ χ2(T; T) ,

where the first parameter of the χ2 distribution is the degrees of freedom and
the second is the non-centrality parameter. The χ2(n, λ) distribution is the
distribution of the sum of n i.i.d. N(νi, 1) random variables, where λ = ∑ ν2

i .
This distribution is not as widely available in tables at the back of statistics
books as is the ordinary χ2 distribution, but it is available as a function call in
R or S, and also (as the function ncx2inv ) in matlab if the statistics toolbox
has been installed.(which it probably is on the departmental machines, but
probably isn’t on student edition versions running on student laptops). In any
case, with T = 3,

P
[

.5643 <
∑ x2

t
µ2 < 16.521

]
= .95

∴ P
[

∑ x2
t

16.521
< µ2 <

∑ x2
t

.5643

]
= .95 .

(f) For each of the following samples, find x̄,
√

s2, the maximum likelihood
estimate of µ, the flat-prior posterior mean of µ, and the posterior mean
of µ when the prior is proportional to µ−2 exp(−1/(10µ)). The posterior
means probably require numerical integration. There are functions in
Matlab and R that do numerical integration, or it is fairly easy to code
this yourself in a couple of lines.
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Also find for each sample the 95% confidence intervals you derived above
and 95% HPD (highest posterior density) regions under the flat prior and
the proper prior. If p(µ | ~x) is the posterior density function, the 95%
HPD region for µ is a set of the form {µ | p(µ | ~x) > p̄} for a p̄ such that
the set’s posterior probability is .95. You will need the computer to find
it numerically.
The samples:

(i) {−5, 0, 5}
(ii) {0, 1, 2}

(iii) {5, 5.1, 5.2}
(iv) {−2,−2,−2.1}

The pdf of the sample is

µ−3 exp

(
−1

2 ∑
(

x
µ
− 1

)2
)

from which it is not hard to derive a quadratic equation satisfied at the FOC
for a maximum, whose unique positive solution is, for a sample of size 3,

µ̂ =
−∑ xt +

√
(∑ xt)2 + 12 ∑ x2

t

6
.

The answers for the estimators, then are

MLE’s 4.082 .8844 3.153 3.290
Flat prior µ̂ 8.868 1.471 4.841 8.685
Prop. prior µ̂ 4.449 0.9669 3.397 3.525

Note that the prior, though it is proper, has an infinite mean. However it is
very sharply peaked, much moreso than the likelihood itself, at µ = .05.
This does not matter as much as it might seem, because the likelihood is
extremely small near µ = .05. The prior’s main effect is to strongly damp the
long right tail in the likelihood and slightly shift the mode to the left. Even with
this fairly strong prior belief in smaller µ’s, however, the posterior is enough
skewed to the right that the posterior mean lies considerably above the MLE
in each case. This is entirely from the effect of taking the posterior mean
rather than the mode. The posterior mode with the proper prior is in every
case considerably below the MLE.
For the confidence intervals, the answers are

x̄ ( 0, ∞) ( .469, ∞) ( 2.393, ∞) ( 15.45, ∞)
s2 (20.33, 2962) (.8132, 118.5) (.00813, 1.1185) (.00271, .3949)
∑ x2

t (3.026, 88.61) (.3026, 8.861) ( 4.724, 138.3) ( .7511, 21.99)

For the HPD regions the answers are
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flat (1.82, 22.2) (0.467, 3.17) ( 1.75, 9.84) (1.22, 23.5)
proper(1.74, 8.54) (0.454, 1.697) (1.689, 5.77) (1.14, 7.29)

Note that the confidence intervals for a given sample differ sharply among
themselves in some samples and are generally wider than the Bayesian in-
tervals. Their erratic behavior reflects our having chosen samples in which
the sample means and variances are in unlikely relations to each other, ex-
cept for the second sample {0, 1, 2}. The Bayesian intervals are sensitive to
the rather strong prior mainly in cutting back on the right tail when the prior
is applied. The left ends of the interval are not very sensitive to the prior.
A set of graphs that display all the answers to this question is at the end
of this answer sheet. The flat prior cases come first, for samples 1-4, then
the proper prior cases. The points labeled “ml” in the graphs are maximum
likelihood estimators for the flat prior graphs, but for the proper prior graphs
they are just the posterior mode. The graphs are generated by Tamas Papp’s
R code, which is available on the course web site.

(g) In deciding which of the three confidence intervals to use, would it make
sense in a given sample to pick whichever is smallest, on the grounds
that that is the one that is giving the most precise information? Why or
why not?
As discussed in class, short intervals can indicate that the model fits well for
hardly any parameter values. Usually we want confidence intervals to behave
like HPD regions for some prior. If a confidence interval is much shorter than
an HPD region with the same probability, this then suggests it is not a good
indicator of uncertainty about the parameter’s location.

(h) How should empty confidence intervals be interpreted? Should there
be a big difference between the interpretation of an empty confidence
interval and of a very short (nearly empty?) confidence interval?
See previous answer.

(i) Show that the Bayesian posterior mean and HPD region can’t be com-
puted for the flat prior, if the sample size is one.
With a sample size of one, the likelihood is very close to e−1/µ for large µ.
But this is not integrable, so it can’t be treated as a flat-prior posterior density.



6

0 5 10 15 20 25

0.00

0.05

0.10

0.15

x

f(
x)

1.
81

8

4.
08

2

8.
86

2

22
.2

31

hp
d_

L

m
od

e

m
ea

n

hp
d_

U

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

0.
46

7

0.
88

4

1.
47

1

3.
17

hp
d_

L

m
od

e

m
ea

n

hp
d_

U



7

0 2 4 6 8 10 12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

f(
x)

1.
74

6

3.
15

3

4.
84

2

9.
84

2

hp
d_

L

m
od

e

m
ea

n

hp
d_

U

0 5 10 15 20 25

0.00

0.05

0.10

0.15

x

f(
x)

1.
22

2

3.
29

8.
67

3

23
.5

24

hp
d_

L

m
od

e

m
ea

n

hp
d_

U



8

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

f(
x)

1.
74

1

3.
17

2

4.
44

9

8.
54

3

hp
d_

L

m
od

e

m
ea

n

hp
d_

U

0.
0

0.
5

1.
0

1.
5

2.
0

0.0

0.5

1.0

1.5

x

f(
x)

0.
45

4

0.
75

1

0.
96

7

1.
69

7

hp
d_

L

m
od

e

m
ea

n

hp
d_

U



9

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

x

f(
x)

1.
68

9

2.
71

3

3.
39

7

5.
76

9

hp
d_

L

m
od

e

m
ea

n

hp
d_

U

0 2 4 6 8

0.0

0.1

0.2

0.3

x

f(
x)

1.
13

7

2.
31

3

3.
52

5

7.
28

6

hp
d_

L

m
od

e

m
ea

n

hp
d_

U


