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SYSTEM LIKELIHOOD FOR VAR’S

1. CONDITIONAL, MARGINAL, AND CONCENTRATED LIKELIHOODS

We begin with the model

(1) y(t)
1×n

= X(t)
1×k

B + ε(t) .

We assume ε(t) | {X(s), y(s− 1), s ≤ t} ∼ N(0, Σ). The fact that this distribution for ε(t)
does not depend on X or lagged y is equivalent to the assumption that X(t) is predeter-
mined in this system, together with the assumption that ε(t) is serially independent.

In this notation, each equation (column of the system) has the same X(t) variable on the
right-hand side and a distinct coefficient vector (column of B). However, we can consider
versions of the system with 0 constraints on elements of B, which create different lists of
variables in different equations, or with other linear restrictions on B, which might create
links across B’s in different equations.

Our assumptions let us write the pdf for the data at dates t = 1, . . . , T, conditional on
{X(s), s ≤ 1} as

(2)
T

∏
t=1

φ(y(t)− X(t)B; Σ)·

q(X(t) | {X(t− s), y(t− s), s > 0} ; γ)q0(X(s), y(s), s ≤ 0, ; γ) ,

where φ is the standard multivariate normal pdf, q is the pdf of X(t) given the past and
q0 is the marginal pdf for pre-sample values of X and y. We need no assumptions on the
form of q and q0, other than that the parameter vector γ entering them is distinct from
B, Σ. Under these assumptions the likelihood, as a function of B, Σ does not depend on γ
or on q or q0. In fact, in this case the likelihood is proportional to

(3) |Σ|−T/2 exp

(
−1

2

T

∑
t=1

(y(t)− X(t)B)Σ−1(y(t)− X(t)B)′
)

= |Σ|−T/2 exp
(
−1

2
tr(Σ−1S)

)
,

where S = u′u and u = y − XB is the T × n matrix with typical row y(t) − X(t)B. We
can easily see that, as a function of B with Σ held fixed, this expression is e raised to a
quadratic polynomial in B, so it will be proportional to a Gaussian pdf with some mean
and covariance matrix (assuming that the coefficient on the second-order term is negative
definite, which it clearly is).
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2 SYSTEM LIKELIHOOD FOR VAR’S

To see what is the mean and variance of the implied conditional distribution for B, we
introduce the notation Vec(B) = β̃ and Vec(y) = ỹ. Then we can write the exponent in (3)
as

(4) −1
2

tr(Σ−1S) = −1
2
(ỹ′(Σ−1 ⊗ I)ỹ− 2ỹ′(Σ−1 ⊗ X)β̃ + β̃′(Σ−1 ⊗ X′X)β̃) .

This should be a somewhat familiar-looking quadratic form. By the usual completing-
the-square exercise, we can rewrite it as

(5) −1
2
(
(β̃− ˆ̃βOLS)′(Σ−1 ⊗ X′X)(β̃− ˆ̃βOLS) + tr(Σ−1û′û

)
,

where û = y− XB̂OLS, B̂OLS = (X′X)−1X′y, and ˆ̃βOLS = Vec(B̂OLS). From this expression
it is clear that, conditional on Σ, the likelihood has the shape of a N( ˆ̃βOLS, Σ⊗ (X′X)−1)
distribution. Thus the conditional mean of B does not depend on Σ, so long as the prior
is flat in B.

To get the marginal posterior on B, we need to integrate out Σ. For this, we return to
the likelihood in the form on the right-hand side of (3). If we have an upper triangular
Cholesky square root Q of S (i.e. an upper triangular Q with Q′Q = S), we can write
V = QΣ−1Q′ and then apply Propositions 2 and 1 from Appendix B to rewrite (3) as

(6) |V|T/2 |Q|−T exp
(
−1

2
tr(V)

) ∣∣∣∣
∂Σ

∂Σ−1

∣∣∣∣
∣∣∣∣
∂Σ−1

∂V

∣∣∣∣ dV

= |V|T/2 |Q|−T exp
(
−1

2
tr(V)

) ∣∣∣Σn+1
∣∣∣ |Q|−(n+1) dV .

Using the fact that |Q| = |S|−1/2, this can be rewritten as

(7) exp
(
−1

2
tr(V)

)
|V|T/2−n−1 |S|(−T+n+1)/2 dV .

This expression factors into a piece dependent on V and another that depends only on S,
so that when we integrate out V, we will be left with a term proportional to |S|(−T+n+1)/2.

When the likelihood f (z, θ) is a function of a two-component parameter vector θ =
(θ1, θ2), the likelihood concentrated with respect to θ2 is the function of θ1 obtained by
maximizing f with respect to θ2 for each value of θ1. As we noted in class, concentrating
(3) with respect to Σ produces a function of B proportional to |S|−T/2. This does not match
the marginal pdf for B with a flat prior on B and the upper triangle of Σ, which is what we
computed above. However, if we take our prior on Σ to be proportional to |Σ|−(n+1)/2, it
is easily seen that the marginal posterior on B and the concentrated likelihood match.

2. TESTING GCP

Suppose we have a special case of the system (1) of the form

(8)
[
y1(t) y2(t)

]
= [X1(t) X2(t)]

[
B11 B12
B21 B22

]
+ [ε1(t) ε2(t)] .
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As we noted in class, we can choose a γ to make ν(t) = ε1(t)− ε2(t)γ orthogonal to ε2(t)
and define C1 = B11 − B12γ, C2 = B21 − B22γ, Ω = Var([ν(t) ε2(t)]) to allow us to rewrite
the system as

(9)
[
y1(t)− y2(t)γ y1(t)

]
= [X1(t) X2(t)]

[
C1 B12
C2 B22

]
+ [ν(t) ε2(t)] .

Because the Jacobian of the transformation of parameters is the identity, and because the
disturbances in the two blocks of equations in the transformed system are orthogonal, the
likelihood factors into two pieces, one involving the parameters of the second equation
only, the other involving the transformed first equation’s parameters. Thus inference
about the parameters of the second block of equations can be conducted by considering
the likelihood for that block alone, as if there were no other equations in the system.

Testing for Granger causal priority (GCP) is a case where these results apply. GCP
is the condition that, in a system in which X(t) consists entirely of lagged values of y
and we have grouped all lagged values of the first block y1 of y into X1(t), B12 = 0.
Thus a classical likelihood ratio test of the hypothesis that y2 is GCP to y1 is obtained by
constructing twice the difference in log likelihoods and treating it as χ2(d f ), where d f ,
the degrees of freedom, is the number of elements in B12. To be more specific, the classical
LR test statistic is

(10) T
(
log(

∣∣∣SR
22

∣∣∣)− log(
∣∣∣SU

22

∣∣∣)
)

,

where SR
22 and SU

22 are the restricted and unrestricted cross-product matrices of residuals
for the second block of equations.

APPENDIX A. PREDETERMINED, (STRICTLY) EXOGENOUS, WEAKLY EXOGENOUS, OR
STRONGLY EXOGENOUS X’S

The first two of these terms, “predetermined" and “exogenous", were in wide use in
econometrics before Engle, Hendry and Richard 1983 (henceforth EHR) extended the ter-
minology. The early usage characterized the relationship of right-hand side variables and
disturbances in an equation system. In this usage, X being predetermined in (1) means
that

ε(t) is unrelated to {X(s), y(s− 1), s ≤ t} .
The phrase “unrelated to" in this definition can be given a variety of specific meanings.
Since we are working here with likelihood, we will take predeterminedness of X(t) to
mean that

ε(t) is independent of {X(s), y(s− 1), s ≤ t} .
Other versions of the assumption are, e.g.,

E [ε(t) | {X(s), y(s− 1), s ≤ t}] = 0

or
E[ε(t) | {X(s), y(s− 1), s ≤ t}] = 0 .

These weaker versions of the assumptions may be made as part of proofs that results
we will derive for Gaussian likelihood are approximately correct under more general
conditions.
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The stronger assertion that X is exogenous in (1) means that

ε(t) is unrelated to {X(s), −∞ < s < ∞} .

In a likelihood framework again, “unrelated to" is taken to mean “independent of", and
there are corresponding weakened version of this assumption based on the E and E op-
erators.

X(t) predetermined implies the absence of serial dependence in ε(t). Predetermined
X(t) is the main assumption required in proofs that in some sense least squares is the best
estimator for B.

X(t) exogenous is generally impossible when X(t) contains lagged dependent vari-
ables, and thus is an assumption usually made when the X and y variables are completely
distinct. Exogeneity of X is the main assumption required in proofs that GLS is the best
estimator for B.

The EHR notion of weak exogeneity in its general form makes no reference to equations
or residuals. It is concerned entirely with conditions under which certain parameters of
the joint distribution of two variables y and X can be estimated without loss of informa-
tion from the conditional distribution of y | X alone. But specialized to our case of linear
regression with ε(t) ∼ N(0, Σ), weak exogeneity becomes the requirement that

(i) X(t) is predetermined in (1),
(ii) the marginal distribution of {X(s), y(s− 1), s ≤ 1} does not depend on any un-

known parameters included in B, Σ, and
(iii) the pdf of X(t) | {X(s), y(s), s < t} does not depend B or Σ.

In this case, the likelihood for all the data on X and y over the whole sample factors into
two pieces, one of which is the usual Gaussian regression likelihood, the other a function
of X’s and of parameters other than B, Σ. If the prior also makes B, Σ independent of the
other parameters, the posterior pdf factors in the same way as the likelihood, justifying
inference based on the regression likelihood alone.

Strong exogeneity, in EHR’s terminology, applied to the multivariate Normal regres-
sion model, is exogeneity plus the requirement that the pdf of {X(s), s = 1, . . . , T} not
depend on B, Σ and that the prior make B, Σ independent of other unknown parameters.

EHR argued correctly that these notions were important, because econometricians were
used to justifying single-equation estimation methods based on claims about exogene-
ity and predeterminedness, without careful attention to model parameterization, which
could lead to mistakes. However they presented their arguments in such a way that it
might appear that predeterminedness and exogeneity, in their old senses, were mistaken
notions in themselves. This is not true. It is useful to be able to discuss whether, say,
“price is predetermined in the demand equation" as a property of the actual demand
equation, without regard to how we have parameterized it or how our beliefs about its
parameters relate to beliefs about other parameters. EHR are correct in pointing out that
after we have decided what we think about predeterminedness, we still have work to do
in deciding whether single-equation estimation is justified. But these considerations can
usefully separated from the question of whether the predeterminedness assumption itself
is justified.
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APPENDIX B. ALGEBRA OF SYMMETRIC MATRIX JACOBIANS

B.1. Notation.
symbol dimensions definition

P: n2 × n2 P~A =
−→
A′

F: n2 × n2 F~A = ~B, where bij = 0 for i 6= j, bii = aii

H: (n2 + n)/2× n2 H ~A is the stacked upper triangle of A
S: n2 × (n2 + n)/2 H′ + PH′ − FH′

In words, F picks out of ~A the diagonal elements of A, H picks out the upper triangle,
and HP picks out the lower triangle. S′ picks out the lower triangle, adds it to the upper
triangle, then substracts the diagonal to avoid doubling it.

B.2. Arguments. Here are some Lemmas, some of which are widely useful in doing cal-
culus with matrices.

Lemma 1.
−−→
ABC = (C′ ⊗ A)~B ,

Proof. This a straightforward, but perhaps tedious, exercise in wrting both sides of the
equality out in sum notation. ¤
Lemma 2. If A and B are square symmetric matrices, the eigenvectors of A⊗ B are all the vec-
tors of the form vi ⊗ wj, where vi is an eigenvector of A and wj is an eigenvector of B, and the
corresponding eigenvalue is λiµj, where λi and µj are the corresponding eigenvalues of A and B.

Proof. Obviously (A⊗ B)(vi ⊗ vj) = λiλj(vi ⊗ vj) and there are n2 such vectors. Here we
are using the fact that an n⊗ n square symmetric matrix always has n distinct real eigen-
vectors. Since there are only n2 eigenvectors for a matrix of this size, these clearly exhaust
them. Note that since vi ⊗ vj has the same eigenvalue as vj⊗ vi, any linear combination of
such a pair is also an eigenvector. Thus the assertion in the theorem has to be interpreted
as meaning that these are all eigenvectors, and for repeated roots these vectors span the
corresponding space of eigenvectors with the same eigenvalues. ¤
Lemma 3. If A and B are symmetric matrices, and if we define Â = H ~A to be the stacked upper
triangle of A, then

∂Â
∂B̂

= H
∂~A
∂~B

S .

Proof. The H on the left of the right-hand-side expression simply extracts the upper trian-
gle of A, where the rows of the partial derivative correspond to elements of ~A. The S on
the right reflects our accounting for the fact that if we maintain symmetry in B, changing
bij when i 6= j entails changing bji, so the derivative with respect to bij when symmetry
is maintained is the sum of the partial derivative with bji held constant and the partial
derivative w.r.t. bji with bij held constant. So we add H′, which picks out columns cor-
responding to the upper triangle, to PH′, which picks out columns corresponding to the
lower triangle, and subtract FH′ to avoid double-counting the diagonal. ¤
Lemma 4.

H′H + PH′HP− F = I
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Proof. H′H is all zeros except for ones on the diagonal in the positions corresponding to
the upper triangle of a stacked square matrix. PH′HP rearranges the locations of the ones
so that they are in the positions corresponding to the lower triangle. Adding the two
gives a matrix with ones on the diagonal in all positions except those corresponding to
the diagonal in a stacked n× n matrix. Subtracting off F then gives us the identity. ¤
Lemma 5. If A is symmetric, the eigenvalues of H(A⊗ A)S are the vectors of the form

H
(
(vi ⊗ vj) + (vj ⊗ vi)

)
,

with corresponding eigenvalues λiλj.

Proof.
H

(
(vi ⊗ vj) + (vj ⊗ vi)

)
= H(I + P)(vi ⊗ vj) .

But

SH(I + P) = H′H + H′HP + PH′H + PH′HP− FH′H − FH′HP

= H′H + PH′HP− F + P(H′H + PH′HP− F) = I + P ,

using Lemma 4. In deriving this, we use the facts that FH′H = F = FP, which follow
because H′H is diagonal with ones in the upper triangular positions, while F picks out
the elements corresponding to the diagonal, and because the locations of the diagonal in
~A are the same as their locations in ~A′ = P~A. But with this result in hand the lemma
follows immediately. ¤
Proposition 1. ∣∣∣∣∣

∂Â−1

∂Â

∣∣∣∣∣ = |A|−(n+1) .

Here we are taking the | | notation to indicate the absolute value of the determinant.

Proof. Applying Lemma 1, we can conclude that

∂~A−1

~A
= −(A−1 ⊗ A−1) .

Then applying Lemmas 3 and 5, the result follows from the fact that the determinant is
the product of the eigenvalues. ¤
Proposition 2. If A = C′ · B · C. with C upper triangular and B symmetric, all n× n, then∣∣∣∣

∂A
∂B

∣∣∣∣ = |C|n+1 .

Proof. Again applying Lemma 1, we can obtain

∂~A
∂~B

= C′ ⊗ C′ .

This is a lower triangular matrix. If the diagonal elements of C are all distinct, they are
the eigenvalues of C and we can apply essentially the same argument as for Proposition
1. But they need not be distinct, so we make a more direct argument.

H(C′ ⊗ C′)S = H(C′ ⊗ C′)H′ + H(C′ ⊗ C′)PH′ − H(C′ ⊗ C′)FH′ .
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The first term of the three on the right hand side is a lower triangular matrix with di-
agonal elements of the form ciicjj, in fact with elements corresponding to all the distinct
unordered pairs i, j. The second is also lower triangular, but the P factor in it results in all
diagonal elements except those corresponding to diagonal elements in a stacked matrix
(i.e. the sequence 1, n, 2n, . . . , n2) being zero, while the non-zero ones are in the same po-
sition as in the first factor. Finally the last factor is again a diagonal matrix with nonzero
elements only in the same positions, 1, n, 2n, . . . , n2. So the diagonal elements of the last
two terms cancel to leave a zero diagonal, and the determinant is just the product of the
diagonal elements of the first term, which completes the proof. ¤
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