
ECO 513 Fall 2005 C. Sims

MID-TERM EXAM

There are 5 questions, including one on a second page. Answer all 5 questions. There
are 90 points in total, including 5 bonus points awarded free to everyone who hands in the
exam.

(1) (15 points) Suppose the Gaussian process Xt satisfies

Cov(Xt, Xt−s) =

{
1 s even
0 s odd

.

(a) Is this process stationary?
If the mean is constant, it is stationary, as the covariances between X’s at
different dates depend only on their separation in time, not their absolute loca-
tion. Since we are given that this is a Gaussian process, means and covariances
completely characterize joint distributions, so this is all we need to check.

(b) Is this process linearly regular? If so, display its moving average repre-
sentation.
No. Because the correlation of Xt with Xt−s is 1 for even s, X can be pre-
dicted perfectly arbitrarily far into the future, and is therefore indeed linearly
deterministic.

(c) Is this process linearly deterministic? If so, determine E[Xt | {Xt−v, v ≥ 99}].
Assuming mean zero, the answer is simply Xt−100. Though Xt−99 is in the in-
formation set, since it is an odd lag, it is uncorrelated with X(t) and therefore
no help in forecasting. But because of the perfect correlation, Xt = Xt−100.

(d) Is this process ergodic? Prove your answer is correct.
No. Any given realization of this process will oscillate between an “even”
value of Xt and an “odd” value. It will be exactly periodic with period 2. So
a time average of X over one realization will converge to (X1 + X2)/2, which
is a random variable, not E[Xt] = 0.

(2) (15 points) Consider the function

SX(ω) = e−(π−ω)−1(π+ω)−1
, ω ∈ [−π, π] .

(a) Sketch the shape of this spectral density function. Is it the spectral den-
sity of a stationary Gaussian process? How do you know?
It’s everywhere positive, symmetric around 0, and integrable. Therefore it is
the spectral density of a stationary Gaussian process. (We can define a process
in the frequency domain with independent increments and variances of its
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integrals over intervals defined by this spectral density. It will then have an
inverse FT that is a stationary, finite-variance process.). A plot:
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(b) Is it the spectral density of a linearly regular process? How do you
know?
No, because a linearly regular process has to have a spectral density such that

∫ π

−π
log S(ω) dω > −∞ .

Here that amounts to∫ π

−π

−1
(π −ω)(π + ω)

dω > −∞ .

But in the neighborhood of π and−π, this integral behaves like
∫ a

0 (1/x) dx,
which is infinite, so the condition is not met. Note, though, that because
the spectral density is close to flat over most of (−π, π), realizations of
the process will look a lot like those of an i.i.d. process. It is only with
a very long sample that the possibility of predicting with arbitrary pre-
cision would become apparent.

(3) (15 points) yt = εt + .7εt−1 − .4εt−2, where ε process is i.i.d. N(0, 1).
(a) What is the variance of yt conditional on knowledge of {εs, s < t}?

This prediction error is just εt, so its variance is 1.0.
(b) What is the variance of yt conditional on knowledge of {ys, s < t}?

The roots of the MA polymial here are

−.7±√.49 + 1.6
.8

= (1/1.0728,−1/.3728) ,

one of which is inside the unit circle, so projecting on past ε’s is not the same
as projecting on past y’s. So we have to “flip a root”. The polynomial can be
written as

(1 + .3728L)(1− 1.0728L) = −1.0728L(1 + .3728L)(1− (1/1.0728)L−1)

We can get a new MA operator that implies the same ACF as the original by
replacing the L−1 with an L in this expression. The lead term in the new MA
operator will be 1.0728, which reflects the scaling up in the variance of the
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innovation that comes from using only past y’s, instead of past ε’s, in forming
forecasts. So the new forecast error variance is 1.07282 = 1.1509.

(4) (25 points) yt’s fundamental MA representation is yt = εt + αεt−1.
(a) Write out the plant and observation equations for a Kalman filter, treat-

ing st = (εt, εt−1) as the state and α as known.

plant: st =
[

0 0
1 0

]
st−1 +

[
εt
0

]

observation: yt =
[
1 α

]
st

(b) With y1 = 1, y2 = 0 being the whole sample, calculate filtered and
smoothed estimates of the state at t = 1, 2, assuming α = .7 and that
the initial prior covariance matrix for s1 is the identity. Also calculate
the log marginal data density (likelihood times prior) for this value of
α. 2-decimal place accuracy is enough, and for the likelihood you can
leave logs unevaluated, if you’re not doing this on a calculator.
The prior on s1 is N(0, 1), and we observe [1 α]s1. (We could have more con-
ventionally said that we had a N(0, 1) prior on s0, which would have implied
this same pre-observation belief about the distribution of s1.) The distribution
of s1 | y1 is then determined by

E1[s1] = ((y1 − E0y1) Var0(y1)−1 Cov0(y1, s1) = 1 · (1 + α2)−1
[

1
α

]
=

[
.6711
.4698

]

Var1(s1) = I −
[

.6711

.4698

]
[1 .7] =

[
.3289 −.4698
−.4698 .6711

]
.

The log likelihood element for this first observation is− 1
2 log 1.49− 1

21/1.49 =
−.5350.
Conditional on this first observation, the distribution for s2 has mean E1s2 =
[0 .6711]′ and

Var1(s2) =
[

1 0
0 .3289

]
.

The observation y2 has E1y2 = .4698 and Var1(y2) = 1.1612. Again apply-
ing the usual Gaussian regression formulas, we find that

E2s2 =
[−.4046

.5780

]

Var2(s2) =
[

.8618 .1982

.1982 .0456

]
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The log likelihood element for this observation is

−1
2
(log(1.1612) + (−.4698)2/1.1612) = −.1698

So we’re done with the filtering, and adding up the likelihood elements will
give us the marginal likelihood. The smoothed estimate of ε1 is already avail-
able as the filtered t = 2 estimate of the second state variable. All that remains
is the smoothed estimate of ε0. But we already know exactly, at time t=1,
what ε1 + .7ε0 is — it’s 1.0, the observed value of y1. So we get the smoothed
estimate of ε0 by solving .5780 + .7ε̂0 = 1, i.e. ε̂0 = .6029.

(5) (15 points) Though there is no unique optimum deseasonalizing filter, such
a filter ought to remove power in a narrow band about each seasonal fre-
quency and change the series it is applied to as little as possible at non-
seasonal frequencies. With these qualities in mind, find the Fourier trans-
forms of each of the filters below and discuss how well each one meets the
criteria for a deseasonalizing filter for monthly data.
(a) 1−L12

1−L = ∑11
s=0 Ls

The FT of this is (1 − exp(−12iω))/(1 − exp(−iω)). Its absolute value
is (2− 2 cos(12ω))/(2− 2 cos(ω)). It is easy to see that this has zeros at
2π j/12, for integer j 6= 0, and an application of l’Hôpital’s rule tells us that
it takes on the value 12 at 0. The 12 at zero means that at that frequency vari-
ation is scaled up by a factor of 12, so we might consider dividing by 12. But
at other non-seasonal frequencies above π/6 the peaks are far smaller. So this
filter meets the criterion of being small at seasonal frequencies, but it substan-
tially distorts the relative power at different non-seasonal frequencies. It could
be useful if divided by 12 and if we were interested only in non-seasonal vari-
ation at frequencies lower than π/6, i.e. periods longer than a year. Note that
because the filter is not symmetric about zero, its Fourier transform is com-
plex, meaning it “phase shifts” the data. The phase shift is zero to first order
in the neighborhood of the zero frequency, but non-zero elsewhere. Roughly
speaking, since data at t are replaced by an average over the year preceding t,
a delay of six months is introduced.

(b) 1−∑3
s=−3 L12s/7

This FT is

1− 1
7

e36iω − e−48iω

1− e−12iω = 1− 1
7

sin(42ω)
sin(6ω)

.

L’Hôpital’s rule again tells us that this is 0 at 2π j/12, this time for all integer
j, including j = 0. The slope gets steep fairly quickly as we move away from
seasonal frequencies, meaning that a fairly narrow band of power is removed,
and the filter is periodic, so non-seasonals are treated the same, whether they
are high or low frequencies. The FT is real, so there is no phase shift. The only
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real problem is the elimination of all power at 0, which is not really a seasonal
frequency.

(c) 1−∑3
s=−3 L4s/7

This one has FT 1 − sin(28ω)/(7 sin(4ω)). It has zeros at 2π j/4, so it
misses quite a few seasonal frequencies. It would be OK for quarterly data, not
for monthly.

(d) 1−∑3
s=0 L12s/4

This has a shorter moving average than that in 5b, so it will take out variation
in a less narrow band. Also, it’s asymmetric, so it will induce phase shift. So
on the whole it is worse than 5b, though it shares some of its characteristics.


