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1. FILTERING

• If Yt = a ∗ Xt, then Ỹ(ω) = ã(ω)X̃(ω) and SY(ω) = |ã(ω)|2 SX(ω).
• So to remove a peak in the spectral density of X, we choose an a such that |ã| is

small over the band of frequencies in which the peak is large, replace X with a ∗X.
• Seasonal adjustment: doing this with bands around all the seasonal frequencies

2π j/S, where S is the number of observations per year and j is an integer. (In
continuous time, S is just the length of the year in our time unit.)

• This leaves a lot of room for various methods: width of band, how close to zero
with |ã|.

2. OPTIMAL SEASONAL ADJUSTMENT?

(1) Since the non-seasonal variation that interests us presumably has a spectral density
that is smooth across seasonal bands, why not adjust so the adjusted series has
smooth spectral density across these bands?

(2) Or, why not have a model: Xt = XN
t + XS

t , XN ⊥ XS, XN
t non-seasonal, XS

t entirely
seasonal?

(3) Or, why not just “wipe out” seasonal variation, setting |ã| = 0 in seasonal bands?

3. THERE IS NO OPTIMUM

• All these approaches require adapting adjustment method to the series being con-
sidered.

• First two require both bandwidth and degree of damping to adapt.
• Last requires bandwidth to adapt.
• Second implies that adjusted series should have dips at the seasonal frequencies.

4. DIPS?

X̂N
t = a ∗ Xt , a minimizes E[(X̂N

t − XN
t )2)] .

If a were of fixed finite length, we could calculate the least squares fit from knowledge of
SN and SS, the spectral densities of the seasonal and non-seasonal components, because
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these would allow us to compute the autocovariance functions and cross-covariance func-
tions of the components and of X itself. But it is easier to understand what is going on by
translating to the frequency domain and thinking of making separate linear projections,
frequency by frequency, of X̃N on X̃.

This makes sense because X̃(ω) is independent across frequencies. If we project X̃N on
X̃ at each frequency, we get

ã(ω) =
Cov(X̃(ω, Ỹ(ω))

Var(X̃(ω))
=

SXN X
SX

.

This formula can’t be interpreted literally, of course, because Fourier transforms of
processes do not exist as random variables at individual frequencies. A more careful
statement would be, if we want to project the random variable F̃X̃N

(c) on the random
variable F̃X(c̃), and if c̃ = Iω±ε, then the regression coefficient is approximately ã(ω) =
SXN Xω)/SXω), assuming SXN X and SX are both nearly constant over the interval ω ± ε.
Then piecing these regression coefficients together across values of ω, we get a to be the
inverse Fourier transform of

ã = SXN X/SX =
SXN

SXN + SXS
.

But notice that, since SXN is smooth across seasonal frequencies and SXS is near zero
except for peaks in seasonal bands, ã will have dips at seasonal frequencies, with the size
of the dips dependent on the ratio of the height of the peaks compared to the height of SX
at the neighboring non-seasonal frequencies.

This is a special case of a more general point. If we must estimate X based on a noisy
observation Y = X + ε of it, the minimum variance estimate will have lower variance than
X itself, with the degree of damping of variance dependent on the ratio of noise to non-
noise variance in the observation. In the seasonal bands, X̃ is a very noisy observation on
X̃N, so variance there of the best predictor will be much lower than the variance of X̃N

itself.

5. SPECTRAL DENSITY MATRICES

If X is an m-dimensional vector valued process, we can FT each of its components to
obtain X̃(ω), where as before this has to be interpreted as dZ(ω), that is the differential
of a complex-valued Gaussian process Z in the frequency domain that has independent
increments. We can FT the autocovariance function RX to obtain SX, but now both RX(t)
and SX(ω) are m×m matrices. As in one dimension,

Var
(
Z(ω2)− Z(ω1)

)
=

∫ ω2

ω1

SX(ω) dω .

Note that for a vector valued process it is no longer true that RX(t) = RX(−t). But if we
interpret the ′ operator as, in the time domain, both transposing a matrix and reversing
the sign of the time argument, we do have RX(t) = R′X(t). In other words, RX(t) is
the transpose of RX(−t). This means that SX(ω) = S′X(ω), if in the frequency domain
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we maintain the convention that ′ both transposes and takes the complex conjugate. A
complex matrix A for which A′ = A, where ′ both conjugates and transposes, is called
Hermitian.

The off-diagonal elements of SX are just the FT’s of the cross-covariance functions of
the corresponding components of the X vector. The SX(ω) matrices are always positive
semidefinite, i.e. c′SX(ω)c real and non-negative for all real or complex vectors c.

6. RELATIONS AMONG ADJUSTED SERIES

Suppose Y = b ∗ X + ε, with Xt independent of εs for all t, s and bs = 0 for s < 0. If b
has just finitely many non-zero coefficients, we can estimate this consistently by OLS. But
suppose instead we have to estimate it using seasonally adjusted series, Y∗ = aY ∗ Y and
X∗ = aX ∗ X, where aY, aX are seasonal adjustment filters.

Then b̃ = SYX/SX, and this is the FT of what we will recover in large samples by OLS
estimates using Y and X. If instead we use Y∗ and X∗, we get

b̃∗ =
SY∗X∗

SX∗
=

ãY ¯̃aXSYX

|ãX|2
=

ãY

ãX
b̃ .

Note that if X has been seasonally adjusted, ãX will be very small in seasonal bands, so
if Y has not been seasonally adjusted, or has been seasonally adjusted “less aggressively”
(meaning aY does not go so close to zero in the seasonal bands), b̃∗ will have peaks in
absolute value at seasonal frequencies. In the reverse case, there will be seasonal dips in∣∣b̃∗∣∣.

7. ROOTS, INVERTIBILITY, AND FUNDAMENTALNESS AGAIN

We know already that if a(L) is a finite-order polynomial in L, it has a convergent
inverse in positive powers of L iff its roots, all lie outside the unit circle. If a is a moving
average operator, then the invertibility condition guarantees that Xt = a(L)εt (with L
now interpreted as the lag operator) is the fundamental MA representation, because it
implies we can write εt = a−1(L)Xt which in turn implies, assuming finite variance and
stationarity for both ε and X, that the σ-fields generated by current and past X and current
and past ε are the same at every date.

This condition generalizes. Even if a is an infinite-order polynomial in L, a necessary
and sufficient condition that a ∗ ε be a fundamental MA representation is that |a(Z)| > 0
for all |Z| < 1. The generalization not only extends the result to infinite-order MA’s, it also
allows for the possibility of zeros in a(Z) for |Z| = 1. If there are zeros on the unit circle,
but none inside, then there is no convergent a−1 in positive powers of L, but nonetheless
there is a sequence of finite-order bj(L)’s such that bj(L)Xt → εt.

Here is a somewhat mysterious result that we will not prove:

Theorem 1. If a is an analytic function on the unit disk with no zeros inside the unit circle,∫ π
−π log

(
a(e−πω)

)
dω = 2π log(a(0)).
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This means that for a fundamental MA operator a,
∫ π
−π

(
log(ã(ω)

)
dω = 2π log(a0).

Since (using our convention that the variance of ε in a MA representation is one) a2
0 is

the variance of the one-step ahead prediction error in the process, this lets us determine
the one-step-ahead prediction error from the Fourier transform ã. Of course if we had ã
available, it would be easier to do this using the fact that

∫ π
−π ã(ω) dω = a0. But the result

using the log becomes more useful when we have just SX available, and do not know the
fundamental MA operator. SX(ω) = ã(ω) ¯̃a(ω), so

∫ π

−π
log SX(ω) dω =

∫ π

−π

(
log ã(ω) + log ¯̃a(ω)

)
dω .

Because ã(ω) = ¯̃a(−ω), the imaginary parts of the integrals of both log terms drop out,
so this expression is just 4π log(a0).

8. THE WOLD DECOMPOSITION AND THE WOLD REPRESENTATION

Suppose X is a finite-variance stationary process. We say X is linearly deterministic
iff the greatest lower bound of Var(Xt − X̂t−s) when X̂t−s ranges over all finite linear
combinations of Xv for v ≤ t− s, is zero, for every s, no matter how large. In other words,
a linearly deterministic X can be forecast with arbitrarily low error arbitrarily far into the
future.

We say X is linearly regular iff the greatest lower bound of Var(Xt − X̂t−s) when X̂t−s
ranges over all finite linear combinations of Xv for v ≤ t − s, converges to Var(Xt) as
s → ∞. In other words, for a linearly regular process the proportion of variance in Xt that
is forecastable dwindles toward zero as the forecast horizon goes to infinity.

The best linear s-step ahead predictor of Xt based on information up to time t − s is
denoted E [Xt | {Xv, v ≤ t− s}]. It is the minimum variance predictor among all those
that can be constructed as limits of sequences of finite linear combinations of Xv’s dated
t − s or earlier. For a Gaussian process, E [Xt | {Xv, v ≤ t− s}] = E[Xt | {Xv, v ≤ t− s}].
For both concepts, we often shorten the notation to Et−s[Xt] or Et−s[Xt] when this would
not create confusion.

The one-step-ahead forecast error Xt − Et−1Xt is called the innovation in X at t.

Theorem 2. If X is any stationary process with finite mean and variance, it can be represented
as X = XD + XR, where XD is linearly deterministic and XR is linearly regular. Furthermore,
XR

t = a ∗ εt, where as = 0, s < 0, ∑ a2
s < ∞, and εt is the innovation in X at t.

This implies that every linearly regular stationary process X has a spectral density that
can be written SX = |ã|2. In other words, our formula for finding the spectral density
from the Fourier transform of an MA operator applies not just to finite-order MA’s, but to
every linearly regular stationary process.

Every non-negative real-valued integrable function SX on [−π, π] satisfying SX(ω) =
SX(−ω) is the spectral density of a finite-variance stochastic process. This raises the ques-
tion of whether all such spectral density functions generate linearly regular processes. In
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fact, some do not. We have already observed that we can find the one-step-ahead predic-
tion error variance from SX. If the process is linearly regular, this prediction error variance
must be positive. Therefore a process is linearly regular iff

∫ π

−π
log

(
SX(ω)

)
> −∞ .

Note that this implies that the spectral density of a linearly regular process cannot vanish
over any interval of non-zero length. The formula holds also for multivariate processes;
in that case the log SX term in the integral is replaced by log det(SX).

9. THE IMPOSSIBILITY OF ã(ω) = 0 OVER NON-ZERO LENGTH INTERVALS

Any discrete-time process X that can be represented as a one-sided (possibly infinite-
order) MA (with, of course, square-summable weights) X = a ∗ ε is linearly regular,
even if a has roots inside the unit circle. This must be true, because it is easy to see
that, because of square-summability of a, the forecast error variance in predicting Xt from
{εs, s < t− v} must converge to Var(Xt) as v → ∞, and we know that forecasts based on
past ε’s must be at least as good as those based on past X’s. (The forecasts are the same if
the representation is fundamental.)

So, given any one-sided filter b, we know that
∣∣b̃

∣∣2
= SX for some linearly regular X

and therefore that
∣∣b̃

∣∣ cannot vanish over any interval of non-zero length. So a filter that
“wipes out” variation in seasonal bands cannot be one-sided.

In fact a filter a with ã(ω) = 1 outside seasonal bands and ã(ω) = 0 inside a band
around each seasonal is necessarily two-sided and symmetric. While actual seasonal fil-
ters used in practice are not closely approximated by this limiting case, they are gen-
erally two-sided and symmetric. A crude example, sometimes used for a quick check:
a0 = 1 − 1/n, as = −1/n for s 6= 0 and s = jS for integer j, and |j| ≤ n, and as = 0
otherwise. Here S is the length of the season (e.g. 12 for monthly data). This makes the
adjusted series the deviation between the current level and the average of corresponding
months between n years ago and n years from now.

Obviously the adjustment filters cannot be two-sided at the start and at the end of the
series, so special adjustments are made there.

10. PATHOLOGIES OF AUTOREGRESSIVE MODELS WITH SEASONALLY ADJUSTED DATA

We have observed that seasonal adjustment is likely to create dips in the spectral den-
sity of the adjusted series at the seasonal frequencies. Where seasonality is strong, optimal
adjustment would make these dips deep. Recall that the log of the one-step-ahead fore-
cast error variance of a linearly regular process is exp (1/(2π))

∫
log SX dω. The integral

in this expression can become much smaller if SX is made to dip close to zero, even over
a small interval, because log SX approaches −∞ as SX → 0. So seasonal adjustment can
in principle create major distortions in one-step-ahead forecast error variance, which can
be an important issue in rational expectations models. This should not be surprising.
Seasonal adjustment applies a filter that makes the current value of the series depend on
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future as well as past values of the data. By exploiting the fact that the adjusted data
contain information about the future, it can become possible to greatly reduce forecast
error.

11. WHY SEASONAL ADJUSTMENT IS NOT QUITE AS BAD AS IT LOOKS

Consider the case of our regression model Y = a ∗ X + ε. Suppose that instead of esti-
mating a freely, we set up a parametric model in which a finite parameter vector θ deter-
mines a as a(θ), and we choose our parameterization so that ã(θ) cannot have sharp peaks
or dips at seasonal frequencies, no matter what the value of θ. Least squares estimates of
θ will then choose θ̂ to minimize (using â to represent a(θ̂))

Var(Yt − â ∗ Xt) = Var(εt) + Var
(
(â− a) ∗ Xt

)
= Var(εt) +

∫ π

−π

∣∣ ˜̂a− ã
∣∣2 SX(ω) dω .

In other words, the estimate of θ will be chosen to minimize a weighted average of
squared errors in the frequency domain, with the weights given by the spectral density
of X.

If we have chosen our parameterization well, we may hope that, using the true non-
seasonal components of Y and X we would find a and a(θ̂) extremely close. If we instead
must rely on seasonally adjusted data, the results may still be extremely accurate, because
SX will dip at the seasonal frequencies. Even though the parameterization constrains ã(θ)
to be smooth across the seasonal bands and thus probably not to match the a that best fits
the adjusted data, the weight on errors at these frequencies will be small, so the estimated
ã(θ) is likely to match the true ã for these data well at non-seasonal frequencies, less well
at seasonals, and thus on the whole to match fairly well what would be obtained with the
unobservable non-seasonal component.

If we use the unadjusted data, but maintain our parameterization, the results are likely
to be very bad. The unadjusted data have peaks at the seasonal frequencies, so the ap-
proximation error is weighted especially strongly there. The estimated ã(θ) therefore is
likely to match the least squares ã well at the seasonal frequencies, poorly at non-seasonal
frequencies. It will therefore probably be very different from what would have been ob-
tained with the unobservable non-seasonal data.

One can make a similar, slightly more subtle, argument concerning autoregressive
models and forecast error variances, but we will not go through it explicitly here.

The conclusion is that if you know how to construct a parameterization that is likely
to fit well with unobservable non-seasonal data, and if the parameterization makes sharp
rises or falls in |ã| at seasonal frequencies impossible, then the approximation error in-
volved in using seasonally adjusted data is likely to be small — and smaller the greater
the reduction induced by the seasonal adjustment in variance in the seasonal bands.

There are several important “if”’s in this optimistic conclusion, however. It may not
be easy to construct a parameterization with the required qualities. A simple low order
MA operator a(L) must be smooth across any narrow band of frequencies. But we will
shortly be considering models of the ARMA form, a(L)/b(L). Even if a and b are both
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low order, such models can have arbitrarily sharp peaks at arbitrary frequencies. If they
are low order, they can have only a small number of such peaks, but seasonal effects can
sometimes be concentrated at one or two frequencies.


