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HIDDEN MARKOV CHAIN MODELS

1. The class of models

We consider a class of models in which we have a parametric model for the conditional
distribution of the observation yt | {ys, s < t} with the pdf p(yt | θt, {ys, s < t}). The
parameter θt varies over time and is determined by an unobserved state variable S, so
that θt = θ(St). The unobserved state takes on a finite number of values j = 1, . . . ,m
and follows a Markov chain, so that

P [St = i |St−1 = j] = hij . (1)

For such a model it is straightforward, given H = [hij], a known form for the θ(St)
function and a prior distribution for the initial state, to evaluate the pdf of the data
(i.e. the likelihood, when it is treated as a function of θ(·) and H), conditional on the
initial observation y(1). In the process we generate filtered estimates of the state, giving
P [St = i | {ys, s ≤ t} , θ(·), H] for all j at each t. The filtered estimates of state proba-
bilities can then be converted by a recursive algorithm to smoothed estimates, giving
P [St = i | {ys, s ≤ T} , θ(·), H], where T is the date of the last observation. A similar
recursive algorithm will generate pseudo-random draws from the posterior distribution
of the sequence of states {St, t = 1, . . . , T} conditional on {yt, t = 1, . . . , T} , θ(·), H.

It is therefore not difficult to program likelihood maximization for these models, and,
depending on the form of θ(·) and on what restrictions there may be on the form of
H, also not difficult to program Gibbs sampling from the posterior distribution of the
parameters.

2. Uses of and problems with the model

This class of models is obviously attractive because of its tractability. It is also
attractive because it easily accommodates discontinuous “regime changes”. Models
that allow for regime changes but treat them as non-stochastic are usually limited as
forecasting tools or for characterizing uncertainty because regime changes in economics
usually do have a stochastic, dynamic character — if they have happened once, they
can probably happen again, so modeling uncertainty about them is important.

The regime changes do not need to be shifts in mean, or shifts in regression parame-
ters. They can be restricted to shifts in residual variances, so that the model becomes
a way of modeling stochastically varying heteroskedasticity, i.e. stochastic volatility.
The most common way of modeling stochastic volatility treats residual variance as a
continuously distributed random variable with some sort of autoregressive serial depen-
dence. Hidden Markov chain models can easily allow for the possibility of discontinuous
sudden jumps in variance, while the more standard model cannot easily do so. Hidden
Markov chain models make all volatility shifts discontinuous, though, which may not
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be appealing. Nonetheless, by using many states and a suitably restricted H matrix, a
hidden Markov chain model can approximate a model with continuously distributed,
continuously varying heteroskedasticity, as we will explain below.

The model as laid out above allows no dependence of hij on y. That is, the evolution
of the state is entirely exogenous to the stochastic model for determining yt from the
past. In a model of stochastic volatility this restriction is not obviously undesirable,
though it certainly would be worth testing. In a model of monetary policy behavior
with y a policy-controlled interest rate, this restriction is definitely unappealing. There
one thinks of policy “regimes” as shifting in response to the history of inflation and
interest rates. The derivations in the next section of filtering, likelihood, smoothing,
and sample-drawing for {St} are all easily generalized to allow dependence of H on y.
However, the discussion of drawing artificial samples from the conditional distribution
of H given data and other parameters that appears in section 4 would not apply to
such a model, and sampling from the posterior on H or on the parameters determining
it would be substantially less convenient for models that allowed feedback from y into
determination of S.

3. Implementing the calculations for likelihood and for filtered,
smoothed and simulated S

Suppose we are given p(St | {ys, s ≤ t} , θ(·), H), the pdf of St given data up through
time t. (Since this section is entirely concerned with calculations in which θ(·) and H
are held fixed, we will drop them as explicit arguments of pdf’s henceforth. Also, we
will use p as a generic symbol for a pdf, with the random variables for which p is pdf
and the the conditioning information implicit in p’s arguments.) We wish to use the
observation yt+1 to form p(St+1 | {ys, s ≤ t + 1}). We will henceforth use Yt to refer to
{ys | s ≤ t}. We would also like to form p(yt+1 |Yt), since a product of terms of this
form will give us the likelihood function.

Observe that

p(yt+1, St+1, St |Yt) = p(St |Yt) · p(St+1 |Yt, St) · p(yt+1 |Yt, St, St+1)

= p(St |Yt) · p(St+1 |St) · p(yt+1 |Yt, θ(St+1)) . (2)

On the right of the last equality in this expression, the first p is the one we assumed
given, the second can be read off from H, and the third is the model for y conditional
on parameters that we began with. Thus we know how to evaluate this expression.
But then

p(yt+1 |Yt) =
∑
i,j

p(yt+1, St+1 = i, St = j |Yt) (3)

p(St+1 |Yt+1) =

∑
j p(yt+1, St+1, St = j |Yt)

p(yt+1 |Yt)
. (4)

To form a complete likelihood, we need to know the unconditional distribution of S1.
Usually the observed value of y1 will in fact be informative about S1, but calculating the
unconditional joint distribution for y1 and S1 implied by the dynamic model is difficult,
and if the model might be non-stationary, the unconditional distribution might not
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even exist. Instead we are treating y1 as non-stochastic and assuming S1 is drawn
from the unconditional distribution of S alone. This can be found from H as the
right-eigenvector of H associated with its unit eigenvalue. This will be a vector p̄
satisfying

Hp̄ = p̄ , (5)

which obviously makes p̄ a steady-state for the unconditional pdf. It can happen that H
has multiple unit-eigenvalues. In that case the Markov process is not ergodic, meaning
that when started up from different initial conditions it can converge to different steady-
state distributions. (An example: H = I, which imply that the process simply remains
in whatever state it started in.) In such cases we take p̄ to be the average of all the
right eigenvectors corresponding to unit roots.

So to start up the recursion, we use p̄ in place of the p(S1 |Y1) that the recursion
calls for.

The recursion to generate the smoothed distribution of states assumes that we start
with p(St+1 |YT ) and have available the complete filtering output from the forward
recursion, i.e. p(St |Yt), t = 1, . . . , T ). We aim at finding p(St |YT ), from which we can
continue the recursion. We observe

p(St+1, St |YT ) = p(St+1 |YT ) · p(St |St+1, YT ) = p(St+1 |YT ) · p(St |St+1, Yt)

= p(St+1 |YT ) · p(St+1 |St) · p(St |Yt)∑
j p(St+1 |St = j) · p(St = j |Yt)

. (6)

The second equality follows because yt+s for s ≥ 1 depends on St only through St+1,
so that when St+1 is known, only values of y dated t and earlier provide additional
information about St. The last equality just applies the formulas relating conditional
and joint densities.

The right-hand side of the last equality in (6) involves only factors we have assumed
we already know, so we can compute this expression. But then looking at the first
left-hand side, it is apparent that if we sum it over all possible values of St+1, we arrive
at our target, p(St |YT ).

Finally, the recursion to generate a sample path of St from its conditional distribution
given the data can also be based on (6). Note that the right-hand side of the first
equality includes the term p(St |St+1, YT ), which is then constructed via the expressions
developed in the remaining equalities. Note further that

p(St |St+1, YT ) = p(St | {St+s, s ≥ 1} , YT ) , (7)

because future S’s (like future y’s) depend on current St only via St+1. Thus we can
implement a backward recursion. Beginning by drawing ST from the filtered p(ST |YT ),
we then draw ST−1 from

p(ST−1 |ST , YT ) = p(ST−1 |ST , YT−1) =
p(ST |ST−1) · p(ST−1 |YT−1)∑

j p(ST |ST−1 = j) · p(ST−1 = j |YT−1)
, (8)

and so on back to t = 1.
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4. Implementing a full Gibbs chain on all model parameters

The algorithm in the preceding section for making a draw from the distribution of
{St} |YT can form one component of a Gibbs sampling scheme. The other component,
of course, would have to be sampling from the posterior pdf of θ(·) and H condi-
tional on {St}. Whether this is convenient or even feasible depends on the form of
p(yt |Yt−1, θ(·), H) and on what restrictions there may be on the form of H.

When H is unrestricted (except for the normalizing identity that requires each col-
umn to sum to one), the likelihood depends on it, for fixed {St}, in a straightforward
way. It is not likely to be practical to leave H unrestricted except in small models with
few states, but the principles here will carry over to some other cases. As a function
of the elements hij of H, the likelihood with the S’s fixed is proportional to

p̄(S1)
∏
i,j

h
n(i,j)
ij , (9)

where n(i, j) is the number of dates t, 2 ≤ t ≤ T , at which St−1 = i and St =
j. The steady-state probability distribution p̄ depends on H via (5). The part of
this expression following the p̄ term has the form of the product of m independent
Dirichlet(n(1, j) + 1, n(2, j) + 1, . . . , n(m, j) + 1) pdf’s, for j = 1, . . . , m. The Dirichlet
is a standard distribution and is easy to sample from. The p̄ term gives the full
expression a non-standard form, but in reasonably large samples the p̄ term is likely
to be fairly flat relative to the remainder of the expression. Therefore a Metropolis-
Hastings sampling scheme, in which the values of H are drawn from the Dirichlet, then
an accept/repeat decision is made based on the value of the p̄ term under the new and
old draw, is likely to be fairly efficient.

This method of sampling from the conditional posterior for H under a flat prior
is easily adapted to cases where there are zero restrictions on the H matrix and to
non-flat, but Dirichlet, priors. However it may well be attractive to parameterize H
more tightly than is possible with zero restrictions alone, and this may make sampling
from the H posterior more difficult.

Sampling from the θ(·) posterior is inevitably model-dependent, so we take that up
in our example below.

5. Example: Poor Man’s Stochastic Volatility Model

We take p(yt | θ(·), Yt) from the general model of section 1 to be determined by the
equation

rt = α0 + α1rt−1 + εtσ(St) , (10)

where r is thought of as an interest rate or asset yield and ε is i.i.d. N(0, 1). The
θ(·) function is therefore characterized by m + 2 parameters: The m values of σj, j =
1, . . . , m corresponding to the m states, plus α0 and α1, which do not vary with the
state.

We impose the requirement that σj < σj+1, all j. Since the states differ only in their
σ values, we can apply the same permutation to the σ sequence and to the subscripts
of the H matrix without changing the model’s implications for the behavior of the
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observable y’s. The restriction that the σ sequence be a monotone function of the
state is therefore necessary to avoid redundancy in the parameterization.

Sampling from the conditional posterior of these m + 2 parameters conditional on
H and an {St} sequence is best accomplished in two steps. First, conditioning on
the {σj} values, the likelihood is that of a normal linear regression with known, but
time varying variances, i.e. a “weighted least squares” model. The posterior is therefore
normal, centered on the least-squares estimates of α0 and α1 based on the appropriately
weighted data. (Data for a period t in which St = j are weighted by 1/σj). The
covariance matrix of this normal distribution is just the “(X ′X)−1” matrix for the
weighted data. So sampling from this conditional distribution is simple.

With the α’s held fixed, the likelihood as a function of the σ’s is proportional to

m∏
j=1

σ
−n(j)
j e

−
s2

j

2σ2
j , (11)

where n(j) is the number of occurrences of state j in the {St} sequence and s2
j is the

sum of squared residuals, calculated using the fixed values of α, over time periods in
which St = j. The expression (11) is proportional to the product of m inverse-chi-
squared pdf’s, for with the j’th pdf having s2

j/2 as its inverse-scale parameter and
n(j) − 1 as its shape parameter. It is therefore easy to draw from this distribution.
To impose our monotonicity requirement on the σ sequence, we can just discard any
draw that violates the requirement. So long as the data contain substantial evidence
for time-varying variances, this should result in few discards, though with m large and
slight evidence for differences among the σj’s, the result could be inefficiently many
discards.

But we will not want to sample directly from this conditional likelihood in any case.
when H implies that a certain state j should be rare, it can easily happen that a draw
of the {St} sequence contains no occurrences of that state. In that case n(j) = s2

j = 0,
and the conditional posterior pdf for σj is flat. It therefore cannot be normalized to be
a proper pdf and we cannot draw from it. A proper prior pdf on the σ’s is therefore
necessary so that the conditional posterior remains well-defined for states that fail to
occur in a sampled S sequence. A convenient way to introduce such a prior is to
add a dummy observation for each state with a squared residual u2

0, where u0 is some
reasonable guess as to the likely usual size of residuals for the model. This is equivalent
to increasing each n(j) count by 1 and each s2

j by u2
0. If the data turn out to imply

that some state or states are rare, however, this prior could influence results, so checks
(e.g. by varying the choice of u0) for how sensitive results are to the prior would be
important.

6. Software

A set of matlab functions is available on the course website that implement all the
calculations described in the preceding sections. Here is a list of the functions, with
descriptions of what they do. Note that for the exercise you are required to do for this
course, only the last two of these programs (plus a function minimizer) is needed. The
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others are described here so that you will understand how the calculations are being
done and so that you could modify them yourself to estimate some model other than
the model of section 5 (referred to henceforth as the PMSV model).

[lh,sp]=mclh(y,x,sig,b,H): Generates likelihood and filtered state probabilities for given
values of the parameters.
y: T × 1 vector of left-hand-side variable data.
x: T × k matrix of right-hand-side variable data (lagged r and a column of

ones for the PMSV model).
sig: The 1×m vector of residual standard deviations, as a function of the state

b: The k×m matrix of coefficient vectors for the m states (all columns iden-
tical for the PMSV model).

H: The m×m matrix of state transition probabilities.
lh: The T × 1 vector of multiplicative likelihood increments. The product of

these is the likelihood, the sum of their logs the log likelihood.
sp: The T×m matrix of filtered state probabilities. Each row is the conditional

probability distribution for St given Yt.
smsp=mcsmooth(H,sp): Generates smoothed state probabilities from the filtered probabilities

and the transition probability matrix.
smsp: The T ×m matrix of smoothed state probabilities. Each row is the condi-

tional probability distribution for St given YT .
spdraw=mcdraw(H,sp): Generates a draw from the posterior on {St} from the transition ma-

trix and the filtered state probabilities.
spdraw: A T × 1 vector representing a draw from the posterior pdf of the {St}

sequence.
H=mcHdraw(spdraw,oldH): Generates a Metropolis-Hastings draw from the conditional pos-

terior on the transition matrix H from a given draw on {St} and the previous
value of H.
H: A Metropolis-Hastings draw from the conditional posterior on H.

OldH: The previous draw’s value for H, which the Metropolis-Hastings algorithm
may decide to repeat.

b=mcbdraw(y,x,sig,spdraw): Generates a draw from the conditional posterior of the regres-
sion parameter vector (α in the PMSV model).
b: A k × 1 vector representing a draw from the posterior probability over

the coefficient vector. Assumes that only σ, not the regression coefficients,
varies with the state.

sig=mcsdraw(y,x,b,sdraw): Generates a draw from the conditional posterior on σ. Note
that this routine incorporates a prior with a particular value of u0 and may
need adjustment and/or sensitivity analysis.

[bdraw,sigdraw,pdraw,spsum,spssq] =mcexGibbs(y,x,b0,sig0,p0,nit): Generates a set of
Monte-Carlo draws from the joint posterior pdf on all the parameters of the
PMSV model.
b0: A starting value for the k × 1 coefficient vector.

sig0: A starting value for the 1 × m vector of state-specific residual standard
deviations.
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p0: A starting value for the diagonal of the H matrix. This assumes that
m = 2, so that these two values determine the entire H matrix.

nit: The number of Monte Carlo draws. On a 500Mhz Pentium III with 128k,
1000 draws for the PMSV model complete in a few minutes. 10000 take
over an hour.

bdraw: nit×k matrix of draws on the regression coefficients.
sigdraw: nit×m matrix of draws on the {σj} vector.

pdraw: nit×m matrix of draws of the diagonal of H. Here again, m = 2 is
assumed.

spsum: T × 1 vector of the sums of the draws of the smoothed estimate of the
probability of state 1.

spssq: T × 1 vector of the sums of squares of the draws of the probability of state
1. From spsum and spssq the posterior means and standard errors of the
state probabilities at each date can be constructed.

lh=mcexlh(z,y,x): Returns minus the log likelihood for the PMSV model, with all the pa-
rameters packed in to a single vector. This is the way the likelihood evaluation
must be set up if the function is to be used as input to a function minimization
routine, like csminsel.m or the similar routines packaged with matlab. Note
that the program does not weight by the proper prior on σ that is used in the
Gibbs sampling program, so if it is used for likelihood maximization it does
not find exactly the posterior mode of the distribution from which the Gibbs
sampling program generates draws.
z: This is a 6× 1 vector with elements α0, α1, σ1, σ2, h11, h22.

7. Exercise (not required in the 2005-6 version of the course)

(a) Using the monthly data on the Federal Funds rate available on the course web
site, use mcexlh together with csminwel or another function minimization rou-
tine to find the maximum likelihood estimate of the PMSV model parameters.

(b) Use mcexGibbs to generate draws from the posterior of the PMSV model for
the Fed Funds data. Use at least three starting points and at least 1000 Monte
Carlo draws from each staring point. Assess convergence by plotting the draws
for the parameters as functions of iteration number and by computing “effective
sample size” based on between and within variances.

(c) Compare the maximum likelihood to the posterior mean values of the regression
coefficients and σ. Are the differences large relative to the posterior uncertainty
(posterior standard deviations or inter-quantile ranges)?

(d) Construct a histogram for each of the 6 model parameters (matlab’s hist com-
mand does this automatically) from the Monte Carlo data.

(e) Without estimating a new model, assess whether this model has adequately
captured the time variation in residual variances. (E.g., you might start by
plotting residuals standardized by the model’s posterior mean value of σ(St)
for the value of St with highest posterior probability at each date.)


