
ECO 513 Fall 2005 FINAL EXAM

FINAL EXAM

Answer all questions. The exam has a total of 180 points and is a three hour exam.
(1) 40 points Suppose

yt = .98xt−1 + εt (1)
xt = .96yt−1 + νt (2)

Var
([

εt
νt

])
= I (3)

and εt, νt form the innovation vector for the joint y, x process.
(a) Calculate the spectral density of y.

One can do this with matrix notation, or derive by substituting (2) into (1)

yt = .98 · .96 · yt−1 + εt + .98 · νt−1 .

Then

yt =
εt

1− .9408L2 +
.98νt−1

1− .9408L2

Since εt and νt are serially uncorrelated and uncorrelated with each other at all leads and
lags, this implies that the spectral density of y is

Sy(ω) =
1.96042

|1− .9408e−2iω|2
=

3.8432
1.8851− 1.8816 cos(2ω)

.

(b) Explain why, if this model has been estimated on quarterly data, it implies strong
seasonality. [This can be answered based on the calculations in part 1a, but it might
also be answerable directly, even if 1a stumps you.]
The expression for y’s spectral density obviously peaks at frequencies where cos(2ω) = 1,
i.e.at integer multiples of π. The ratio of the height there to the height of the spectral density
at its minimal values (at the even integer multiples of π) is 1076, i.e. large. π is just one of
the quarterly seasonal frequencies, but this process will have persistent oscillations of period
2. This will certainly appear as a seasonal pattern, even though not all seasonal frequencies
are represented.

(2) 55 points A simple new Keynesian model has this form

Phillips curve pt = pt−1 + .7yt−1 + ε1t (4)
IS ρt−1 = yt − yt−1 + η1t (5)

Fisher relation pt = pt−1 + rt−1 − ρt−1 + η2t (6)

Monetary policy rt = .5(yt − yt−1) + 1.1(pt − pt−1) + ε2t . (7)

The η’s are expectational errors. The two ε’s are independent of each other and across
time.

Date: January 31, 2006.
1



2 FINAL EXAM

When the model is solved, it takes the form

zt = Gzt−1 + ξt , (8)

where the zt vector is pt, yt, ρt, rt stacked up, and

G =




1.0 0.70 0 0
0 0.19 0 0
0 0.23 0 0
0 0.37 0 0


 , ξt =




1.0 0
0.79 0.72
0.94 0.86
1.49 1.36




[
ε1t
ε2t

]
. (9)

(a) Which variable or variables in this system are stationary, if any? Does the system
show cointegration?
The second equation in the solution is yt = .19yt−1 + .79ε1t + .72ε2t. Because the coefficient
on lagged y is less than one in absolute value, y will be stationary. The third and fourth
equations assert that r and ρ will be lagged y plus a serially uncorrelated disturbance. Thus
those two variables are also stationary. The first equation asserts that the first difference
of p is a constant times lagged y plus a shock. This implies p′s ARMA representation
will show a unit root, and it is non-stationary. The system thus has one unit root and one
stable root, with one non-stationary and three stationary variables. You could say it shows
cointegration in a degenerate sense — there are three stationary “linear combinations” —
but these stationary linear combinations are just y, r and ρ themselves. Since one does not
need to take linear combinations to find stationary variables, according to common usage of
the term we might not say this system shows cointegration.

(b) If this system described the true behavior of the economy, suppose we estimated a
structural VAR, identifying the monetary policy equation as the first equation in a
triangular identification scheme. (That is, the identification puts rt on the left of the
first equation and allows it to impact all other variables contemporaneously.) Would
this approach correctly estimate the impulse response of the model to shocks in ε2t,
the policy shock? Justify your answer.
In a Cholesky scheme, the fact that r appears contemporaneously in all the other equations
means that in the “r equation” there are no contemporaneous values of other variables on
the right-hand side. This equation will therefore be just a least-square projections of rt on
past values of all variables in the system. That is just what the last equation in (9) is, so it is
that equation that will be estimated. The residual in that equation is a linear combination of
ε1t and ε2t, not ε2t alone, so this approach will not give correct identification or (therefore)
correct impulse responses.

(c) What if instead the policy equation were put last in the Cholesky ordering?
This would put contemporaneous values of all the other variables in the regression equation.
It can be seen that the last three rows of G and ξt in (9) are just scalar multiples of each other
(to the two-decimal precision that has been displayed). So with current y on the right-hand
side, the fit of the “r equation” will be perfect, with no residual at all, except rounding error.
So this approach also does not correctly recover the policy equation.

(d) What if the monetary policy equation had lagged output growth and inflation, in-
stead of their current values, on the right-hand side?
Here we are considering a modification of the structural model itself, as opposed to a particu-
lar VAR identification scheme. With this change, because lagged z must be uncorrelated with
ε2t, the residual in the reduced-form VAR equation for r will in fact be the structural shock
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ε2t. A Cholesky identification scheme with r first in the ordering will therefore correctly
estimate the impulse responses to a policy shock.
This answer has assumed (as you were told to verbally at the start of the exam) that lagging
the right-hand-side variables in the monetary policy equation does not affect the existence or
uniqueness of the solution to the original model. In fact, with coefficients set at the values
given in the problem, existence and uniqueness are maintained.

(3) 55 points Consider the following model, which might be used for house prices, for ex-
ample.

yt = µt + ρyt−1 + εt (10)

P[µt = µt−1] = θ , all t (11)
(12)

We assume that, conditional on µt 6= µt−1, µt − µt−1 ∼ N(0, ω2) for all t. Note that
this means µt is a martingale. The evolution of the µ’s is independent of the whole ε
sequence. If we model µt as depending on the state, i.e. as µ(St), we can treat this as a
hidden Markov chain model, at least over any finite sample.
(a) Show what the transition probability matrix for the state must look like in order

to implement this model. Assume we normalize by insisting that S1 is the state
prevailing at time 1.
If we treat each new value of µt as a new state, then the states will (with probability one)
never repeat. With the probability of persisting in the same state always θ, we need the
transition matrix to be of the form




θ 0 0 . . . 0 0
1− θ θ 0 . . . 0 0

0 1− θ θ . . . 0 0

0 0 . . . . . . ...
...

0 0 0 1− θ θ 0
0 0 0 0 1− θ 1




.

Using a fixed finite number of states (i.e. a fixed dimension for the transition matrix) is at
best an approximation, though, unless we allow a possibility of one state for each date in
the sample, which is unreasonably many. In practice one would assume a reasonable finite
number, then check whether using a larger number improves the fit.

(b) Describe an algorithm for sampling from the posterior of this model. Note that the
restrictions on the transition matrix may make the posterior fail to be in Dirichlet
form as a function of the transition probabilities.
Actually the likelihood, as a function of θ, is in the form of a Beta distribution, which is
a special case of the Dirichlet. I neglected to make explicit the standard assumption that
εt ∼ N(0, σ2) and i.i.d. across t. The full log likelihood, before invoking any priors and
treating the sequence of state values (with k the number of states and nj, j = 1, . . . , k the
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number of observations in state j) as part of the parameter vector, is
(

k

∑
j=1

nj − k

)
log θ + k log(1− θ)− T log σ− ∑T

t=1(yt − ρyt−1 − µ(St))2

2σ2

−
T

∑
t=1
I{µt 6=µt−1}(µt, µt−1) log ω− ∑T

t=1(µt − µt−1)2

2ω2 .

Notice the last part of the likelihood function, which reflects the assumption that the µj’s form
a random walk and is not a standard part of a time series regression model with Markov-
switching coefficients.
To keep things convenient, we will want a conjugate prior, i.e. one that is Beta in θ, inverse-
Gamma in σ2 and ω2, and jointly Gaussian in the k values of µ and the coefficient ρ,
conditional on the sequence of states and on θ. Note that the extra terms in µ are quadratic,
so the overall posterior on {µt} is Gaussian. However it is not a simple OLS framework. An
ideal answer would display the form of the covariance matrix and mean of the joint posterior
for ρ, {µ(j)}.. A good answer would note that the log likelihood is a quadratic form and
describe how in general one extracts the implied posterior mean and variance.
The algorithm, then, would on each iteration

(i) Draw θ from a Beta(∑k
j=1 nj − k + n0 + 1, k + m0 + 1), where n0 and m0 are the

parameters of the prior on θ. For the prior to imply persistent states, one would want
m0/n0 small.

(ii) Draw {St} using the usual hidden Markov chain forward-backward recursions.
(iii) Draw σ2 and ω2 from their respective mutually independent inverse-gamma distri-

butions. For σ2 the distribution is Gamma(N, u′u/2), where N is the total number
of observations, including both actual and dummy observations on ρ and

{
µj

}
and

u is the vector of residuals, both actual and dummy, from the model equations. For
ω2 the distribution is Gamma(k̂ + k0, ∑((∆µt)2 + `0)/2, where k0 and `0/2 are the
degrees of freedom and scale parameters from an inverse-gamma prior on ω2 and k̂ is
the number of state changes in the {St} sequence.

(iv) Draw ρ and
{

µj
}

from their joint-normal conditional posterior.
It should be possible to integrate ρ,

{
µj

}
out of the conditional joint distribution of them and

σ2, ω2, obtaining a marginal (conditional on θ, {St}) on the variance parameters. Drawing
from this for the variance parameters instead of from their conditional distribution would
make the iteration more efficient.

(c) 30 points
(i) Explain why, in a univariate first-order autoregressive model, confidence in-

tervals generated from a naive bootstrap without bias correction will be mis-
leading from both frequentist and Bayesian perspectives.
The model is yt = ρyt−1 + εt. (You could have included a constant, or not. The
general form of the answer is the same,though the constant introduces subtleties if you
wanted a chance to show off having read and understood Sims, Stock and Watson.)
It is well known that estimates of ρ by OLS, which is MLE conditional on initial
conditions, are biased, as a matter of their distribution in repeated samples, toward
zero. The naïve parametric bootstrap first estimates ρ, say by MLE conditional on
the initial observation, then generates a large number of artificial samples from the
distribution of the data by either drawing from the theoretical normal distribution
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of the shocks or drawing from the sample distribution of the shocks, then generating
data recursively from the model equation with ρ = ρ̂OLS. The estimates of ρ from
the artificial sample are of course also biased toward zero, so if the bootstrap draws
are treated as if they were the conditional pdf for ρ given the data (which of course
would be a mistake from a frequentist point of view) they are very misleading, because
they in effect have doubled the original bias. Also, these simulations will show a
long left tail in the simulated distribution which cannot be justified by looking at
the shape of the likelihood. These objections are from the Bayesian viewpoint. From
the frequentist viewpoint, the point about bias is also valid. A confidence interval
generated this way will tend to be too close to zero and hence not to have close to the
assumed coverage probability. Better results can be obtained by using a first round
bootstrap to estimate the bias, then adjusting the original ρ̂ to eliminate this bias, then
repeat the bootstrapping. Killian showed that in realistic sized samples for small VAR
models this procedure gives reasonable (by frequentist standards) results, even though
it has no firm foundation in even asymptotic theory.

(ii) What does it mean for a MCMC sampling scheme to converge? Describe at
least two ways to check whether it seems to have converged.
There are two senses of convergence that need to be checked. One is whether the
Markov chain has run long enough so that it has settled in to ergodic behavior —
in other words the effects of initial conditions have died away. The other is whether
the sample is large enough to provide accurate estimates of whatever function of the
distribution one might want to estimate from the sample. One technique that applies
to both is the trace plot. If we are sampling the random vector X and we are interested
in E[ f (X)], then we can plot f (Xj) against draw number J. We should be able to
visually cut off a first segment of the sample, after which the rest appears to behave in
a stationary, repetitive way. This checks whether initial conditions are no longer im-
portant. One can also look for patterns indicating high serial dependence — volatility
or level of the plotted serious showing just a few slow waves. These patterns would
indicate that a much longer artificial sample is needed before an accurate estimate of
the mean is possible.
A more formal check is to estimate effective sample size. Effective sample size com-
putations involve two steps. First, an estimate of how much of the MCMC sample
needs to be thrown away as “burn-in”. Sometimes this is done by eye from trace plots.
Sometimes it is done more formally, for example by checking whether when the sample
is cut into n components, the first last n− 1 components have means and variances
that could easily have been drawn from the same distribution, which can be tested. Af-
ter having thrown out the burn-in segment, one then fits a model of serial correlation
to the rest. This can be done with frequency-domain methods, by fitting an AR model,
or by other time-series modeling techniques. The fitted model is then used to construct
an estimate of the the variance of the sample mean of f (Xj), and this is compared to
what the variance would be if the sample had been i.i.d. The actual MCMC sample
size divided by this ratio is the effective sample size. Generally if it is less than 200, the
MCMC sample is regarded as unreliable. If one has in mind a target standard error,
based on substantive considerations, for the standard error of the estimate of E[ f (X)],
one can decide whether to sample further depending on whether this target has been
reached or not, so long as effective sample size is at least around 200.
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Finally, one should check for fat tails. It is quite possible for a target distribution to fail
to have second moments, even though its first moments are well defined. In this case
MCMC will converge, but very slowly, and methods of deciding on burn-in period or
estimating effective sample size that are based on second moments will be useless. Fat
tails can be diagnosed by eye if the trace plots show recurring large outliers, with the
largest outlier increasing fairly rapidly as sample size increases.

(iii) Suppose we are modeling a collection of 20 time series of logged prices of eggs
in US cities. We believe that there is a common, non-stationary component
in these series due to inflation in the general price level, but that this is the
only source of non-stationarity. Can we say a priori what is the form of the
cointegrating vectors for this system? If so, what are they? If not, why not?
The relative prices, in logs, are the differences among the log price (call them pit)
time series. A complete set of stationary linear combinations is then pit − p1t, i =
2, . . . , 20, and the cointegrating vectors are the coefficients forming these linear com-
binations (1 in position i, -1 in position 1, zero elsewhere). There are then 19 coin-
tegrating vectors. The vectors themselves are not unique. Any linearly independent
set of 19 coefficient vectors all of which are orthogonal to the vector of 20 repeated 1’s
spans the same space, which is all that is uniquely defined.


