
ECO 513 Fall 2005 C. Sims

ANSWERS FOR EXERCISE DUE MONDAY, 10/3

(1) The probability space is S = {1, 2, 3, 4, 5}. The probability of every point ω in S is
1/5. We define random variables Xi by

X1(5) = 2

X1(ω) = 1 ω < 5

X2(1) = 2

X2(ω) = 1 ω > 1

X3(3) = 2

X3(ω) = 1 ω 6= 3 .

Let Ft , t = 1, . . . , 3 be defined as the σ-field generated by Xs, s ≤ t.
(a) Display the sets making up each of F1, F2 and F3.

F1: ∅, {5} , {1, 2, 3, 4} , {1, 2, 3, 4, 5}
F2: F1 ∪ {1} ∪ {2, 3, 4, 5} ,∪ {2, 3, 4} ,∪ {1, 5}
F3: all unions of the sets ∅, {1} , {2, 4} , {3} , {5}

(b) Could these three random variables form part of a stationary process?
There are two approaches to answering this. We can put the probability space S aside
and just look at the joint distributions. We note then that each Xi has probability .2 of
being equal to 2, probability .8 of being equal to 1. So all the univariate distributions
are the same. We also need that the two pairwise joint distributions of adjacent Xi’s
are the same. But these also match, with probability .2 on (2,1), .2 on (1,2), and .6 on
(1,1). So these joint distributions are translation-invariant.
A slightly different question is whether on this same probability space (S,F , P) we
could define a stationary process on RZ with these three random variables as X1, X2, X3.
One way to do that is to say that X3s+1(5) = 2 for all integer s, while X3s(5) =
X3s+2(5) = 1 for all integer s. So for ω = 5, the Xs path is periodic, of the form
2, 1, 1, 2, 1, 1, 2, 1, 1, . . . . Similarly for ω = 1, we make Xt(ω) periodic, but start-
ing at 1, so its pattern is 1, 2, 1, 1, 2, 1, 1, 2, 1, . . . , and for ω = 3 the pattern is
1, 1, 2, 1, 1, 2, 1, 1, 2, . . . . Then for ω = 2 or ω = 4, Xt(ω) ≡ 1. This defines a
stationary process, because there are only four possible time paths for X. The constant
time path of course is invariant with time shifts. The three paths that alternate 2’s and
1’s all have the same probability, and they translate into one another under time shifts.
Every event defined in terms of Xt values will be some collection of these four possible
time paths, and hence will have a probability that is invariant under time shifts.

(c) Find Cov(Xi, Xj) for all combinations of i, j = 1, . . . , 3.
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Cov(Xi, Xi) = 1.6− 1.22 = .16, t = i, . . . , 3. Cov(Xi, Xj) = 1.4− 1.44 = −.04,
i 6= j.

(d) Find Et[X3] and Vart[X3] for t = 1, 2, evaluated at X1 = 1, X2 = 1, at X1 =
2, X2 = 2, and at X1 = 2, X2 = 1. Note that these variables are not joint
normal; the conditional expectations will not be linear functions.
E[X3 | X1 = 1] = 1.25, E[X3 | X1 = 2] = 1, E[X3 | X1 = 1, X2 = 1] = 4/3,
E[X3 | X1 = 2, X2 = 2] undefined (conditioning on set of measure zero), E[X3 |
X1 = 2, X2 = 1] = 1.

Var[X3 | X1 = 1] = .0375

Var[X3 | X1 = 2] = 0

Var[X3 | {1, 2}] = Var[X3 | {2, 1}] = 0

Var[X3 | {1, 1}] = .2222

Note that in a jointly Gaussian process, conditional variances can never be greater
than unconditional variances, but in this non-Gaussian case, conditioning on X1 =
1, X2 = 1 yields a conditional variance greater than the unconditional variance.

(2) (a) For each of the sets of moving average weights a below, compute and plot the
acf of Xt = ∑ aiεt−i for time separations s = −15, . . . , 15. This will be tedious
unless you use the computer.

(b) For each of the sets of moving average weights a below, compute and plot 5
simulated draws for Xt, t = 1, . . . , 50 by generating 60 i.i.d. N(0, 1) random
draws and averaging them with a. Note that you can draw a single set of 5
i.i.d. ε sequences and use the same 5 for each of the a’s. This makes it clearer
what differences are due to the a’s alone. All 5 lines for a single a should be
on the same plot.

The a’s:
(a) ai = 1, i = 0, . . . , 10
(b) ai = sin(2πi/10) + 1, i = 0, . . . , 10
(c) ai = cos(2πi/10) + 1, i = 0, . . . , 10
(d) ai = (−1)i, i = 0, . . . , 10

Command to generate a 60 by 5 matrix of N(0, 1) random variables:
matlab: z = nrand(60,5)
R: z <- matrix(rnorm(60*5),ncol=5)
I decided that it was actually clearer to show the draws of separate path realizations for

a given process on separate small graphs. Here they are, as well as graphs of the three
non-trivial RX functions.
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Note that the two trigonometric weight functions produce paths with a tendency to
oscillate with period 10, and that the (−1)t weights produce paths that oscillate with period
2.

(3) There are, or will be, monthly data on the Federal Funds rate on the course web
site. Using these data, find a maximum likelihood estimate of the weights a in a
12th-order Gaussian MA model with constant mean r̄ for these data. Determine
whether the the MA weights to which your estimates have converged are funda-
mental. [You can use “root-flipping”, which we will probably cover in the 9/28
lecture, or you can try starting the maximization from a different place to get con-
vergence to a different set of weights, so you can compare a0’s, or you can construct
an approximation to the one-step-ahead predictor by using a large finite number
of lags and see if its residual variance is close to a2

0.]
I found convergence to weights:
-0.1894538 -0.4761951 -0.7215926 -0.9159184 -0.9054663 -0.9672040 -0.9476629 -

0.7512126 -0.7058590 -0.5214969 -0.5552680 -0.5784963 -0.3537538
These are obviously not fundamental, if the first is interpreted as a0, but they do not

generate a fundamental MA representation even if the weights are taken in reverse order.
The fundamental weights, which I verified both using the cholesky decomposition method
and root flipping, are:

0.5188256 0.7802005 0.8607574 0.9095844 0.9060185 0.8805265 0.8530326 0.7110018
0.6136318 0.5875334 0.4976141 0.3416769 0.1291763
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The weights are plotted below. Note that the fundamental weights (the green line) are
shifted to the left relative to the non-fundamental ones. Engineers call the fundamental
representation the “minimum delay” representation, because in a certain sense it has the
maximal concentration of weights near zero.
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Non−fundamental and fundamental MA weights for Fed Funds data

The MLE of the mean is 5.6682.
Note that this is quite a bad model for this series. The sample acf for the data shows

an autocorrelation of about .3 even at 60 months, and then a turn to a negative auto-
correlation of about .3 at 200 months. This MA(12) model obviously implies that all the
autocorrelations beyond 12 months are zero.


