
Eco513, Part II Fall 2003 C. Sims

SIMPLE MODEL COMPARISON MCMC: ANSWERS

Here is a time series foryt , t = 1. . . ,10:

[
1 0 1 0 1 0 1 1 0 0

]
.

You are to find the posterior probabilities on two models for this series. One model is that
they are i.i.d. draws from a distribution in whichP[yt = 1] = p, P[yt = 0] = 1− p, with a
prior on p that is uniform on[0,1]. The other model is that they have been generated from
a Markov process in whichP[yt = 1 | yt−1 = 1] = p1 andP[yt = 0 | yt−1 = 0] = p2, with a
prior that is uniform over the unit square forp1, p2. The initial observationy1 is under this
model drawn from the marginal steady-state distribution ofyt . That is,y1 is drawn from a
distribution in whichP[y1 = 1] = p̄ and p̄p1 +(1− p̄)(1− p2) = p̄.

(a) Find the MLE’s forp and forp1, p2 conditional on each model.
The first model has likelihood functionp5(1− p)5. Since this is symmetric inp

and1− p, it is obviously maximized atp = .5. Fot the second model the likelihood
is p̄(1− p1)4(1− p2)3p1p2. This latter likelihood arises from there being four 1,0
transitions, three 0,1 transitions, and one each of 1,1 and 0,0 transitions. Solving for
p̄ and writing the whole thing out give us

1− p2

2− p1− p2
· (1− p1)4(1− p2)3p1p2 .

Since this is a two-dimensional fourth-order polynomial, maximizing it analytically
might appear infeasible. Since it is only two-dimensional, though, and on the bounded
support of the unit square, a simple grid search will work. A contour plot of the like-
lihood for the second model, with the peak marked, is below.
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Staring at the algebra a bit would have paid off in this case, though, because it turns
out that the likelihood for this sample is symmetric inp1 and p2. Once we impose
equality on them, the likelihood is easily maximized analytically. The exact maximum
is p1 = p2 = 2/9.

(b) Find the posterior probabilities of the two models, assuming they have equal prior
probability, by direct numerical integration, using a grid of, say, 100 points inp-space
and100×100in (p1, p2)-space.

The answer I obtained this way is that the posterior probability of the i.i.d. model
is .31073. Matlab code that does the calculation is below

p1=.01:.01:.99;
p2=p1;
[P1,P2]=meshgrid(p1,p2);
llh12=-log(2-P1-P2)+4*log(1-P1)+4*log(1-P2)+log(P1)+log(P2);
f12=sum(sum(exp(llh12)))*.0001
> f12 =
> 0.00080023
llh=5*log(p1)+5*log(1-p1);
f=sum(exp(llh))*.01
> f =
> 0.00036075
f/(f12+f)
> ans = 0.31073

(c) Using the second-order approximation to the log likelihood at its peak, calculate an
approximate posterior odds ratio for the two models.

The peak of the 1-dimensional model atp = .5 is .510 = 0.00097656. The peak
of the two-dimensional model atp1 = p2 = 2/9 is (1/(2−4/9)) · (7/9)8 · (2/9)2 =
0.0042514. Minus the second derivative of the log likelihood at the peak for the
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1-dimensional model is10/.52 = 40, corresponding to a Gaussian distribution with
standard error1/

√
40 = .15811. Minus the second derivative matrix for the log

likelihood of the 2-dimensional model has diagonal elements

1
(2−2p̂)2 +

4
(1− p̂)2 +

1
p̂2 = 27.276,

wherep̂ is the MLE for bothp1 and p2 in this sample. The off diagonal elements are

1
(2−2p̂)2 = .41327.

The inverse of this matrix is the corresponding Gaussian covariance matrix, and its
determinant is0.0013445. The integrated posteriors based on the local Gaussian
approximation are, then

0.00097676·
√

2π · .15811= 0.00038711

0.0042514·2π ·
√

.0013445= 0.00097947.

This implies posterior probability of the i.i.d. model is0.28327, within 10% of the
value found by numerical integration over the grids.

(d) Calculate posterior odds ratios for the two models by two Monte Carlo methods:
(i) Importance sampling, using the Gaussian approximations to form the proposal

distribution.
(ii) Metropolis-Hastings sampling, using the Gaussian approximations to form the

proposal distributions.
In each case, make at least 5000 draws and present some evidence on whether your
algorithm has converged. Also calculate estimates of Monte Carlo standard errors in
your estimates ofp, p1, andp2.

In each case we will use a proposal distribution that puts equal probability on the
two models and, conditional on the model, uses

N(.5, .158112) for the i.i.d. model

N

([
.2
.2

]
,

[
0.036671 −0.00055563

−0.00055563 0.036671

])
for the Markov model

Of course we discard draws from the proposal distribution that producep’s outside
[0 1], which means that either we retain these draws as “zeros” when evaluating
expectations, or we must correct the pdf of the proposal distribution to reflect its
truncation. At each draw for the importance-sampling method, we weight by the
ratio of the posterior height to the drawn normal pdf value. We don’t need to worry
about weighting the models themselves, since they are drawn with equal probability.
In fact, for the importance sampling, the models need not even be drawn randomly.
We can just draw equal numbers from both models. The posterior probabilities of the
models are then just estimated as the ratios of the sums or means of drawn weights
on the two models.
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For the Metropolis-Hastings method, we draw from the same distribution (except
that here it is important to keep the process sequential, with the draws randomly from
one model or the other). However now these draws are taken asproposaldraws, and
we keep or discard them according to the usual M-H rule. We form

ρ =
`(p∗)φ(p0)
`(p0)φ(p∗)

,

wherep∗ is the proposal draw parameter value (which may be a one or two-dimensional
vector),p0 is the parameter value from the previous draw,` is the likelihood value,
andφ is the normal pdf we are using for our proposal distribution. Then as usual we
keepp∗ as the new draw ifρ ≥ 1 and keep it with probabilityρ is ρ < 1, otherwise
repeatingp0. The posterior probability of a model is then estimated as the fraction
of draws that are from that model.

My implementation of importance sampling produced a posterior probability of
the i.i.d. model of0.31102, very close to what was found from numerical integration.
The importance weights show only a modest range of variation, so that the sampling
standard deviation of the two mean values are only about 2%, and therefore the close
match between the importance sampling and direct numerical integration results is
not surprising. Code I used to generate the importance sampling results (edited and
cleaned up, so it is not absolutely guaranteed to run as shown), is listed below.

d1=randn(2500 ,1);
s=sqrt(1/40)
d1=.5+d1*s;
lw1=5*log(d1)+5*log(1-d1)+.5*log(2*pi*s^2)+.5*(d1-.5).^2/(s^2);
erff(.5/s) %erff.m, based on the matlab standard erf.m,

%computes the Gaussian CDF.
1-2*(1-ans)
truncfac1=ans
lw1ok=(d1>0)&(d1<1);
m1w=mean(exp(lw1).*lw1ok)*truncfac1;
d12=randn(2500,2);
d12=d12*chol(s12);
lw12ok=(d12>0)&(d12<1);
lw12ok=lw120k(:,1)&lw12ok(:,2);
truncfac12=sum(lw12ok)/2500;
m12w=sum(exp(lw12).*lw12ok)/2500;
lw12=-log(2-d12(:,1)-d12(:,2))+4*log(1-d12(:,1))+4*log(1-d12(:,2))...

+log(d12(:,1))+log(d12(:,2))+log(2*pi)+.5*log(det(s12))...
+.5*sum((((d12-.22222222)/chol(s12)).^2)’)’;

std(exp(lw12(find(lw12ok))))
m1w/(m1w+m12w)
std(exp(lw12(find(lw12ok))))
std(exp(lw1(find(lw1ok))))

Code that implements the Metropolis-Hastings method is displayed below.
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function [model,p,lr]=mhdraw(oldmodel,oldp,oldlr)
% Metropolis-Hastings draw for exercise.
s1= [ 0.19149763480010 -0.00290147931515

0 0.19147565263452];
f1=chol(s1);
mu=(2/9)*[1,1];
s0=1/sqrt(40);
% draw to determine which model is proposed
model=(rand(1)>.5);
if model %=1, i.e. Markov model

z=randn(1,2);
p=z*f1+mu;
if all((p>0)&(p<1))

lr=-log(2-sum(p’))+4*log(1-p(1))+4*log(1-p(2))...
+log(p(1))+log(p(2));

lr=lr+log(2*pi)+sum(log(diag(f1)))+.5*sum(z.^2);
if lr>=oldlr

use=1;
else

use=rand(1)<exp(lr-oldlr);
end

else
use=0;

end
else %model=0, i.e. i.i.d. model

z=randn(1);
p=z*s0+.5;
if p>0 & p<1

lr=5*log(p)+5*log(1-p)+.5*log(2*pi)+log(s0)+.5*(p-.5)^2/s0^2;
if lr>=oldlr

use=1;
else

use=rand(1)<exp(lr-oldlr);
end

else
use=0;

end
end
if ~use

model=oldmodel;
p=oldp;
lr=oldlr;

end
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% interactive code that does the sampling
>for id=1:5000
>[model,p,lr]=mhdraw(model,p,lr);
>mpl(id,:)={model,p,lr};
>end
>mean([mpl{:,1}])
>std([mpl{:,1}])
ans =

0.69580000000000
ans =

0.46011379129537
>ans/sqrt(5000)
ans =

0.00650699163885
> ans*3
% 3 is approximately the square root of the sum of the acf of [mpl{:,1}]
ans =

0.01952097491654

Note that the results of this run make the probability of the i.i.d. model .304, in close
agreement with the other results. However, other runs deviated from this one sub-
stantially, consistent with the rough Monte Carlo standard error calculated above
and reflecting the high serial correlation in the draws.


