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Notes and Exercise on Invertibility Criteria∗

1. ”LAST COEFFICIENT TOO BIG” IN MULTIVARIATE MODELS

As we discussed in class, it is clear that an n’th univariate polynomial A(L) cannot
have all its roots outside the unit circle if |An| > |A0|. This is clear from the fact that

A(L) = A0

n

∏
i=1

(1− ρ−1
i L) ,

where ρi is the i’th root of the polynomial A(z) thought of as having complex argu-
ment z. In this representation we see that

A−1
n =

n

∏
i=1

ρi ,

so of course if |An| > 1, at least one of the roots must be inside the unit circle.
When A(L) is a matrix polynomial, perhaps the easiest way to see the correspond-

ing result is to note that in the A0 = I case the roots of the |A(z)| polynomial are
exactly the inverses of the eigenvalues of the coefficient matrix from the correspond-
ing stacked first-order dynamic system:

[
A1 A2 . . . An−1 An

I 0

]
.

Because of the block structure of the matrix, it is clear that the determinant of the
matrix is |An|. If its determinant exceeds one in absolute value, then at least one of
the roots of |A(z)| must lie inside the unit circle. To translate this to the case where
A0 6= I, we get the condition that |A0| > |An| in absolute value. In other words,
the univariate condition on the relative absolute sizes of An and A0 translates into a
condition on relative absolute sizes of determinants in the multivariate case.

We should emphasize again that these conditions are just very weak necessary
conditions that are often useful as quick checks in practice. It is easy to construct
examples of systems in which A0 is bigger than An in every way, yet |A(Z)| does
not have all its roots outside the unit circle.
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2. FINDING THE FUNDAMENTAL MA FROM A NON-FUNDAMENTAL MA

This is not easy in a multivariate case. In a univariate case, if the non-fundamental
MA operator is a(L) and being non-invertible has a root z0 inside the unit circle, we
can write a(L) = b(L)(1− z−1

0 L). Then we can “flip” the root, replacing a(L) with
a∗(L) = b(L)(1− z0L)/z0. This will imply the same autocovariance function as the
original a. If z0 is complex a∗ may come out complex, but because complex roots
come in conjugate pairs, they always need to be flipped in pairs, and the final result
will be real. Once all roots inside the unit circle have been flipped, we have the
fundamental MA.

An analogous algorithm in a multivariate model is much harder, because of the
non-commutativity of matrix multiplication. Flipping a root is always possible,
however, by the following algorithm.

Suppose A(z) has all its elements finite order polynomials in z and |A(z0)| = 0.
Then we can take the singular value decomposition of A(z) at the root, to obtain
A(z0) = UDV ′, where U′U = V ′V = I and D is diagonal with non-negative ele-
ments. At least one of the diagonal elements of D must be zero, and we can arrange
it so that that element appears as, say dn, the last diagonal element of D. Note that,
in case matrices have complex elements, we are interpreting “X′” to imply both
transposition of X and complex conjugation of its elements. Then

B(L) = A(L)V




I 0

0
1− z0z

z0(1− z0/z)


 , (1)

has all its elements finite-order polynomials in L and obviously has replaced (one
of) A’s z0 root(s) with a 1/z0 root. That the division by 1− z0/z does not make any
elements of the B fail to be finite-order follows from the fact that, by construction, all
the elements in the last column of A(z)V vanish at z = z0, and thus are polynomials
with a root at z0. Finally, we can observe that B(L)B′(L−1) = A(L)A′(L−1), so that B
and A define the same autocovariance function. Repeating this operation for every
root that is on the wrong side of the unit circle, we can arrive at the fundamental
representation. Note that it is important in applying this algorithm that if we begin
with an MA representation y = C(L)ε with Var(ε) = Σ 6= I, we factor Σ as W ′W and
use y = C(L)W ′η = A(L)η as the moving average representation, so that Ry(L) =
A(L)A′(L−1).

This algorithm, when some roots are complex, may deliver complex coefficients
for B(L), even after both elements of a conjugate pair have been “flipped”. If the
original A was real, however, B can be made real by post-multiplying it by the uni-
tary matrix B′0W−1, where W ′W = B0B′0 and W is real. W can be found, e.g., by
Choleski decomposition.
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A computer program that executes this algorithm is now on the course web site,
so that the second exercise, originally “extra credit”, becomes straightforward using
this program.
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3. EXERCISE DUE THURSDAY, 10/25

The first problem should be very easy, though you may need a computer. The
second is extra credit — you don’t have to do it.

(1) Determine, as fast as possible, which of the following are fundamental MA
operators. State in each case how you reached your conclusion.
(a) 1 + 2L + 3L2 + 4L3

(b) 1 + 2L + 3L2 + 2L3 + L4

(c) I +
[

.8 −.7

.7 .8

]
L

(d)
[

1 2
3 4

]
+

[
3 2
4 1

]
L +

[
4 3
2 1

]
L2

(2) Find the fundamental moving average representation corresponding to this
non-fundamental one:

y(t) = ε(t) +
[

1.1 0
0 .8

]
ε(t− 1)

Var(ε(t)) =
[

2 1
1 1

]
.


