
Econ. 513 Time Series Econometrics Fall 2001 Chris Sims

Take-Home Final Exam

There are four questions. They have equal weight, though they are probably not of equal
difficulty. The exam is meant to allow an A performance in four hours of work. Long
answers are less welcome than shorter, correct answers. The exam is available at 10AM
Wednesday, January 23 and is due at 10AM Thursday, January 24. Submission of answers
by email is OK, and I will verify that I have received such submissions. Submission of paper
answers should be at my office, 104 Fisher or to my assistant Judith MacLaury, two doors
down the hall.

(1) Suppose

yt
2×1

= Ayt−1 + c + εt ,

with εt the innovation in yt and stationary with finite variance. If the true
values of A and c are given by

A =
[

1 0
1 0

]
, c =

[
2
1

]
,

and we estimate A and c by OLS, which linear combinations of elements
of the resulting estimates Â and ĉ have non-Gaussian classical asymptotic
distributions? Justify your answer. A direct approach is possible here: It is fairly
obvious that if we let zt = y1t − y2t, we have a stationary random variable equal to
1 + ε1t − ε2t, while y1t itself is an I(1) process with non-zero constant term, and
thus is dominated by linear trend. Since the whole system is can then be expressed
in terms of a constant term, a stationary stochastic term, and a term dominated by
linear trend, all of the coefficients estimated by application of OLS will have the
usual standard Gaussian asymptotics.

To apply the formal analysis of the notes, one needs the Jordan decomposition of the
complete system matrix one obtains by including the constant term in the system.
That is, we write

[
yt
kt

]
=




1 0 2
1 0 1
0 0 1




[
yt−1
kt−1

]
+

[
εt
0

]
.



Here of course the initial k0, and hence all later kt’s, are 1. Then we observe that the
Jordan decomposition we need is




1 0 2
1 0 1
0 0 1


 =




0 1 1
1 1 1

2
0 0 1

2







0 0 0
0 1 1
0 0 1






−1 1 1
1 0 −2
0 0 2


 .

This gives us the components of the system from the three rows of the matrix on the
right above: y1t − y2t − 1, y1t − 2 and . The first is from a block corresponding to a
zero (hence stationary) eigenvalue, while the latter two are from a block dominated
by deterministic polynomials. Then we conclude as before that all components of the
system can be generated without any components dominated by stochastic trend, so
all coefficients and linear combinations of them have standard Gaussian asymptotic
distributions.
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(2) In the structural VAR model

Γ0yt = Γ1yt−1 + εt ,

with as usual εt spanning the space of innovations in yt and having Var(εt) =
I, much applied work imposes for identification zero-restrictions on the Γ0
matrix.
(a) Explain why, if yt is 3× 1 and zero restrictions on Γ0 are the only identify-

ing restrictions, 3 restrictions are needed, generally, for exact identifica-
tion. The system and the restrictions on it are invariant under pre-multiplication
by any orthonormal matrix. An orthonormal matrix of order n has n2 ele-
ments and is subject to the (n2 + n)/2 orthonormality restrictions, leaving
(n2 − n)/2 degrees of freedom, which in our n = 3 case is 3.

(b) Since in this model neither reordering equations nor reordering the el-
ements of y changes the model, there are really only a few distinct pat-
terns in which three zero restrictions can be imposed. Explain why the
following two patterns do not in fact deliver identification:

i)




x x 0
0 x x
0 x x


 ; ii)




x x 0
x x 0
x x 0


 .

In the first the latter two rows can still be pre-multiplied by a 2× 2 orthonor-
mal matrix without violating the restrictions, while in the second the whole
matrix can be be so transformed, even though both matrices have the minimum
necessary 3 zero restrictions.

(c) The following pattern of zeros produces exact identification in part of
the 6-dimensional space of Var(εt) matrices (6d because the covariance
matrix is symmetric):




0 x x
x 0 x
x x 0


 .

Prove that under these restrictions there is an open subset of R6 corre-
sponding to Var(εt) matrices that do not satisfy

Γ−1
0

(
Γ−1

0

)′
= Var(εt)
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for any Γ0 satisfying the restrictions. Here in order for the problem to make
any sense the Var(εt) matrix being discussed has to be interpreted as the re-
duced form residual covariance matrix, not the Var(εt) matrix that was already
assumed equal to I at the outset. Of course if Var(εt) = I, there is certainly no
open subset of the type you are asked to show exists. A student inquired during
the exam about whether it was still true in this part that “Var(εt) = I”, and I
answered too hastily, not realizing that I had used Var(εt) inconsistently where
I had meant to write something like Var(ut), with ut being the reduced form
residuals. Some students did recognize that the question must be aimed at the
mapping between Γ−1

0 (Γ−1
0 )′ and Γ0 and managed to construct useful answers,

but the question was more of a puzzle than it should have been.
Proceeding with the question as it was meant to be, as opposed to as it was,

note that if

Γ0 =




0 c e
a 0 f
b d 0


 ,

then

Γ′0Γ0 =




a2 + b2 bd a f
bd c2 + d2 ce
a f bd e2 + f 2


 .

The 3× 3 ones matrix certainly cannot be written in this form. If either b or
d exceeds one in absolute value, for example, then one of the first two diagonal
elements would exceed one. So with bd = 1, b = d = 1, which in turn, to make
the diagonal elements 1, implies a = c = 0, which would force the first two
elements of the third column to zero. So this matrix, and any matrix near it, is
not of the form Γ′0Γ0. There are positive definite matrices near this one (since it
is itself positive semi-definite), and thus an open set of inverses of such matrices
that are not of the form of Γ−1

0 (Γ−1
0 )′, for Γ0 satisfying the restrictions.

(d) Does this result from 2c imply that we should avoid using this pattern
of restrictions in applied work? Why or why not? If substantive consider-
ations led us to this form as a plausible restriction, there is no reason not to use
it. It would be important to recognize, though, that despite the apparent exact
identification there are restrictions being imposed. In computation, this could
mean that when we try to solve for Γ0 from the reduced form covariance matrix,
there is no solution. In testing, it would mean that maximized likelihood for this
“exactly identified” model could not necessarily be taken to be equivalent to the
unrestricted likelihood maximum.
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(e) List the other distinct possible patterns of zero restrictions, and for each
comment on whether it implies identification. The distinct patterns of 3
zeros, besides those displayed above, are:




x 0 0
x x 0
x x x







x 0 0
0 x x
x x x







0 0 0
x x x
x x x




The first is a standard recursive normalization scheme, which we know gives ex-
act identification without imposing any restrictions. The last makes the second
two rows indistinguishable, and thus does not allow identification, and at the
same time makes the system incomplete, since it implies Γ0 is singular. The mid-
dle pattern provides local exact identification, and probably imposes no global
restrictions, though I don’t have a proof of that.

One could also consider more or fewer than 3 zeros. (One student did, but no
one tried to list them all.) Fewer is not interesting, since it always results in
lack of identification. The patterns with four zeros consist of:

• Three that are a lower triangular matrix (from the first 3 restrictions) plus
one zero on the diagonal. These yield singular Γ0 and lack of identifica-
tion.

• Three that are a lower triangular matrix plus one additional off-diagonal
zero. This yields identification.

•



x 0 0
0 x x
0 x x


, which does not allow identification.

• Various patterns that make an entire row or column zero.
The patterns with five zeros are, besides those that make an entire row or column
zero, 


x 0 0
0 x 0
x 0 x


 ,




x 0 0
0 x 0
0 x x


 .

With six zeros, the only pattern yielding identification is a diagonal matrix.
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(3) Suppose we have available time series on the log of an aggregate price index
pit for each of i = 1, . . . , n countries over a period t = 1, . . . , T. We would like
to construct an aggregate price index Pt for the whole collection of countries.
One approach would be to set up this model:

pit = ci + Pt + νit

Pt = θPt−1 + ξt

νit = ρiνi,t−1 + εit ,

where ξt, {εit, i = 1, . . . , n} span the space of innovations in Pt and {νit, i = 1, . . . , n}
and are assumed stationary, and Gaussian with a diagonal covariance matrix.
Of course here P is unobservable and the idea is to estimate it.
(a) Show how this setup fits in to a standard Kalman filtering framework,

and explain how the Kalman filter would be used in constructing max-
imum posterior density (like MLE, but using a prior) estimates of the
c vector, θ, and the ρi vector. Be explicit about what priors you would
need to specify and discuss what would be reasonable and convenient
choices of priors. We take the state to be

St =
[

Pt
νt

]
,

where νt is the vector of n country νit’s. Then the state evolution equation is

St = ASt−1 + ζt ,

where ζt is ξt stacked over εt and A is a diagonal matrix with θ, then ρ1, . . . , ρn
down the diagonal. Then the observation equation is

pt = HSt + c , where H =
[
1 −I

]
.

The KF would be used to evaluate the likelihood for given values of the parameter
vector γ = [θ, ρ, σ], where σ is the vector of variances of the elements of the
ζ vector. To evaluate the posterior we would need a prior over this parameter
vector, of course, which we would multiply into the likelihood to get the posterior
pdf. Also, to initiate the Kalman filter we would need an initial distribution for
the state vector. If we are modeling the price level, it is likely that we will find
non-stationarity somewhere in the system. It is not clear, though, whether we
should expect it to be mainly in P or in ν. If we were sure that, say, P were non-
stationary and ν were stationary, we might use a N(ci/(1− ρi), σ2

i /(1− ρ2
i ))

as the distribution for the initial νit, and a very-large-variance normal for initial
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P. However other choices could also make sense, and results should be checked
for sensitivity to this aspect of the prior.

(b) The Kalman smoother can give us estimates of the P sequence that use
the full sample of data, but the associated covariance matrices do not
take account of parameter uncertainty. Describe a convenient Markov
chain Monte Carlo sampling scheme that would generate a posterior
distribution for the P series that would take account of parameter un-
certainty. For a given set of parameter values, we can generate a sample draw
from the {St} sequence by a recursive algorithm very similar to the Kalman
smoother. The difference is that at each point t < T of the backward recursion
one draws from the distribution of St | {It, St+1}, where St+1 is from the previ-
ous step of the backward recursion. Details on this are in the notes. This is not
equivalent to drawing from the normal distribution produced by the smoother
at each t.

But this only gives us one draw. To get a distribution that reflects parameter
uncertainty, we must use this draw, together with the data, to generate a draw
of the parameters. Given the {St} sequence, drawing from the posterior on the
parameters is just an application of usual OLS estimates, at least if our prior is
conjugate. If not, then the parameter draw might have to be made a Metropolis
or Metropolis-Hastings draw. Then alternating between such parameter draws
and state-sequence draws, one generates a complete artificial sample.

A few students suggested the sampling scheme Hamilton describes, which
uses the Kalman smoother at each draw. This was not a bad answer, but not
perfectly correct. For one thing, the method he describes does not take account
of uncertainty in the covariance matrices that are taken as given by the Kalman
filter, whereas the Gibbs sampling scheme above does. For another, what Hamil-
ton proposes is not what is usually called a Markov chain Monte Carlo scheme
(as the question requested). It is a Monte Carlo scheme, but generates iid draws.
This is trivially a Markov process, but people knew how to do this before MCMC
theory came on the scene.

(c) If this model is being estimated over a period in which the countries
have differing long-term monetary policies, and thus different long term
inflation rates, yet they are closely linked by trade and cross-country in-
vestments, the model is likely not to fit well. Explain why. The model
constrains all cross-country correlation to come via P, which enters with a unit
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coefficient in every country. Thus the common component of variation is con-
strained to grow at the same rate everywhere. Different trend inflation rates
would have to enter via non-stationarity in νi, and would then imply very weak
relationships between country inflation rates.

(d) Suppose we want to test the model specification by comparing it to an
unrestricted reduced form VAR with given lag length k. How might
we do this? The models aren’t nested, but they are both dynamic models
of the same time series, so the extended Schwarz criterion applies. A tricky
point here is that the index model naturally conditions on no initial conditions,
while the VAR model is most easily handled if the likelihood conditions on initial
conditions. To make the two likelihoods comparable, the VAR model would have
to be used to generate a distribution over the whole sample, by introducing a
prior over the unobserved pre-sample initial conditions.
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(4) Consider the model

yt
k×1

= A1yt−1 + A2yt−2 + c + εt ,

where εt is the innovation in yt and is stationary and Gaussian.
(a) Describe as explicitly as possible the restrictions on A1 and A2 implied

by the claim that the y process is cointegrated. (We are not restricting
the number of cointegrating vectors here, except to claim that there is at
least one.) The idea is to put the restriction in a form such that it would
be easy to write a computer program to check whether it holds or not.
Form the matrix

B =
[

A1 A2
I 0

]
.

If Matlab is available, form [v,d]=eig(B) . Check the number of (near) unit
eigenvalues on the diagonal of d. If this is k or more, there is no cointegration.
If it’s 0, then also there is no cointegration. If it’s between 0 and k, check that
the columns of v corresponding to unit roots form a full column rank matrix.
If not, there are repeated unit roots and therefore no cointegration (in the usual
sense of the term). Otherwise, there is cointegration.

(b) Suppose we wished to test the hypothesis that y is cointegrated and had
a way to maximize likelihood with the restriction imposed. The usual
asymptotic argument that says the Schwarz criterion gives the right de-
cision on which model is correct does not hold here. Why not? The usual
asymptotic argument depends on the assumption that TΩT converges to a non-
singular constant matrix as T → ∞, where ΩT is the inverse Hessian of the log
likelihood. That is not true when unit roots are present.

(c) Suggest a modification of the Schwarz criterion that would work here.
A generic suggestion will not earn full credit. Be as explicit as you can
be about what should be done in this model. You get credit for your
suggestion being convenient as well as for its being asymptotically justi-
fied. The generic answer is: Use the extended version of the Schwarz criterion,
that uses ΩT directly instead of assuming asymptotic behavior for it. A short-
cut is available, though, if we are willing to (which we probably shouldn’t be)
maintain the usual assumptions of cointegration analysis. That is, we could
assume that roots are all either stationary or equal to 1 and that there are no
repeated roots. Then, if there is no cointegration, the sum of squares of all
component y series are 0(T3), and T(3/2)ΩT converges to a constant. So
the Schwarz correction to the log likelihood under that assumption would be
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(3n/4 + (n + 1)/2) log T, instead of the ((2n + 1)/2) log T of the standard
Schwarz criterion. If cointegration is in fact present, then the normalizing fac-
tor is (3(n− q)/4 + (n + q + 1)/2) log T, where n− q is the number of unit
roots present. Estimation subject to the cointegration constraint should in fact
produce some number n − q > 0 of roots exactly equal to one. So we could
save some effort by checking whether the cointegrated model is favored with a
Schwarz correction of between (n + 1

2) log T and (5n + 2)/4 log T. If the an-
swer is the same regardless of which version of the SC we choose, we can avoid
calculating ΩT, at least from the viewpoint of the asymptotic theory. Nonethe-
less, it is probably a good idea to do the extended SC calculation as a check. It is
not uncommon for the extended SC to contradict the standard SC even in cases
where there are no problems with the asymptotics of the standard SC.
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