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ABSTRACT. Changes in economic behavior often appear to be delayed and discon-

tinuous, even in contexts where rational behavior seems to imply immediate and

continuously distributed reactions to market signals. One possible explanation is

the presence of information-processing costs. Individuals are constantly processing

external information and translating it into actions. This draws on limited resources

of attention and requires economizing on attention devoted to signals related to

economic behavior. A natural measure of such costs is based on Shannon’s measure

of “channel capacity”. Introducing information costs based on Shannon’s measure

into a standard framework of decision-making under uncertainty turns out to im-

ply that discretely distributed actions, and thus actions that persist across repeti-

tions of the same decision problem, are very likely to emerge in settings that with-

out information costs would imply continuously distributed behavior. We show

how these results apply to the behavior of a risk-averse monopoly price setter and

to an investor choosing portfolio allocations, as well as to some mathematically sim-

pler “tracking” problems that illustrate the mechanism. Interpreting the behavior

in our examples ignoring information costs and postulating fixed (“menu”) costs of

adjustment would lead to mistaken conclusions.
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I. INTRODUCTION

Rational inattention (RI) theory models individuals as having finite information-

processing “capacity” in the sense of Shannon (see MacKay (2003); Cover and Thomas

(1991) for textbook treatments). It is a theory about why, when information appears

to be available at little or no cost, individuals may not respond to it, or may respond

erratically. It has intuitive appeal — most of us, most days, do not look up the term

structure of interest rates and make corresponding fine adjustments in our check-

ing account balances, even though, with an internet connection this could be done

very easily. RI also has qualitative implications about delay and noise in reactions

to information that roughly match empirical relationships among macro variables.1

Prices of individual products in most markets do not change continually, but

instead stay fixed for spans of time, then jump to new values. We have simple

theories that imply such behavior of prices is optimal (menu costs models) or treat

such behavior as a constraint (Calvo pricing). As fine-grained microdata on in-

dividual product prices has become available, however, we can see that in at least

some markets (e.g. grocery stores) prices not only stay fixed for spans of time, when

they do change they sometimes move back and forth across a finite array of values.

Our simple models explain the fixity for spans of time, but on their face imply that

when a price change occurs, the change should be continuously distributed. We

don’t explain why the price should change, then come back to exactly the same price

as before the change, for example.

Though stickiness of prices has received special attention in the literature, iner-

tial economic behavior appears in many other areas. Macroeconomic modelers find

1Rational inattention was introduced in Sims (2003). It has mostly been applied to model pric-

ing and consumption choices (Maćkowiak and Wiederholt, 2009b,a; Woodford, 2009; Luo, 2008;

Matĕjka, 2008; Tutino, 2009), or portfolio allocation (Van Nieuwerburgh and Veldkamp, 2010; Mon-

dria, 2010). Other applications are in theory (Moscarini, 2004; Yang, 2015; Matějka and McKay, 2015;

Caplin and Dean, 2015).
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they need to postulate “habit” in consumption to account for slow responses of con-

sumption spending and costs of adjustment in investment spending to account for

slow movements in investment. As Sims (2003) pointed out, most macroeconomic

variables do not have time paths as smooth as would be implied by the strong

adjustment costs needed to explain their slow responses to the state of the econ-

omy. Rational inattention accounts for this stylized fact.2 Bonaparte and Cooper

(2009) observe that 71% of households do not adjust their common stock portfolios

over the course of a year, and that this is difficult to explain with adjustment cost

models. In this paper we show that such stickiness in portfolios can emerge from

information- processing costs.

In a simple model he interpreted as a two-period savings problem, Sims (2006a)

found that numerical solutions for optimal behavior, even when exogenous ran-

domness was continuously distributed, implied discretely distributed behavior.

Matĕjka (2008) explored a model he interpreted as describing a Shannon-capacity

constrained monopolistic seller with random costs and showed there again that nu-

merical solution tended to imply discretely distributed behavior. In fact, the time

paths of prices emerging from his simple model matched many of the qualitative

features of individual product time paths shown in, e.g., Eichenbaum, Jaimovich,

and Rebelo (2008).

Matĕjka (2009) considered the behavior of a monopolistic price setter that is

not information-constrained, facing consumers who have finite capacity. The con-

sumers will choose discretely distributed behavior, and this turns out to imply that

it is optimal for the seller to set discretely distributed prices.

The question of whether “stickiness” reflects something like menu costs, or in-

stead rational inattention, is important for economic policy modeling. If stickiness

reflects RI, its form will change systematically if the stochastic process followed by

2The intuition and this qualitative match are discussed at more length in Sims (2003).
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the environment changes. If the stickiness has mistakenly been modeled as due

to a stable adjustment cost in a standard rational expectations model, the adjust-

ment costs will appear to change as the stochastic process followed by the economy

changes. RI thus implies that rational expectations models, developed to explain

how a change in policy behavior could change the non-policy part of a model, are

themselves subject to a similar critique.

Perhaps more important, models that explain stickiness via adjustment costs of

one sort or another imply that rapid change in the sticky choice variables is costly

or distasteful. RI models, which explain stickiness as reflecting information pro-

cessing costs, do not imply that rapid change is in itself costly or distasteful. On the

other hand, they imply that there is a cost to processing information that existing

theories do not take into account. If, for example, an environment of high inflation

requires individual consumers and producers to devote more attention to tracking

prices, there may be a cost that is not captured in the behavior of direct arguments

of production and utility functions. RI therefore does not necessarily generically

imply that cyclical fluctuations are more or less important than in adjustment-cost

models, but it could imply quite different estimates of welfare costs — and thus

different conclusions about optimal policy.

In this paper we consider a generic problem of decision-making under uncer-

tainty. There is an objective function that depends on a vector of actions and on an

exogenous random vector. Part of the random vector is observable, part is unob-

servable. In the standard version of this problem, when the exogenous randomness

is continuously distributed and the objective function is concave (assuming it is be-

ing maximized), we expect the solution to make the action a smooth function of

the observable randomness. We add to this framework an assumption that trans-

lating the observable randomness into actions has an information cost, in units of
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Shannon’s measure. We show that in broad classes of cases, the action is not a func-

tion of the observable data, but instead, because the observable data is imperfectly

assimilated, is random, even conditional on the observable data. Furthermore, in

broad classes of cases the distribution of the action is concentrated on a set of lower

dimension than what would emerge without the information costs. Where action

and observation are both scalars, the continuous one-dimensional distribution of

actions that emerges without information costs becomes a zero-dimensional one —

i.e. one whose support is a finite, or in some cases countable, set of points.

Our results show that the apparently discrete numerical solutions emerging in

the earlier papers really are discrete, and are representative. Because this paper’s

setup covers multivariate actions, it applies to interesting economic models not

considered in earlier papers, including a portfolio choice problem that we consider

in some detail.

II. COMPARISON TO OTHER FORMS OF BOUNDED RATIONALITY AND COSTLY

INFORMATION

Rational inattention is a form of bounded rationality, an idea that has been part

of economics (and psychology) since at least the work of Herbert Simon 1976; 1979

and is still current, as for example in Todd and Gigerenzer (2000) and Gabaix (2011).

Bounded rationality includes both the idea that economic agents do not use all

available information and the idea that they respond to information in ways that

are “simpler” than would be expected if they were perfect dynamic optimizers.

Both of these deviations from perfect dynamic optimization are no doubt present

in reality, but there is a reason to isolate the effects of economizing on information.

If we can come up with a notion of the cost of information, we can go back to a

model of an optimizing agent, just adding the cost of information-processing, or

a constraint on information-processing, to the optimization problem. Of course

this pretends that people have no limitations in rationally optimizing subject to
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information processing costs,and in this sense the approach is unrealistic. But as

elsewhere in economics, it may be useful to study optimizing behavior even when

we know that actual behavior will be at best approximately rational. People can use

trial and error, formal education, imitation of others, even cell-phone apps to arrive

at near-optimal patterns of behavior even if unable to calculate them with explicit

mathematics. To instead fully allow for sub-rationality requires confronting all the

problems of psychology and neurological models of human decision-making, an

area where, despite recent progress, there is still no standard model to guide us.

How, then, to specify costs of information? To see how rational inattention dif-

fers from other approaches, it might be best to sketch a formal decision problem

with information costs. An agent must make a decision δ which can be a function

only of a random vector X that she has observed. Her utility depends on δ(X)

and on another random variable, Y, via a function U(δ(X), Y), and she maximizes

E[U(δ(X), Y)]. Y and X of course have some joint distribution. This is the standard

setup of decision theory in the presence of uncertainty. One can ask the question,

what is the cost in utility of failing to use the observation X in setting δ? That

is, what is the difference E[U(δ̄, Y)] − E[U(δ(X), Y)] when δ̄ is the optimal non-

random choice of δ and δ(X) is the optimally chosen mapping from X to δ. This is

one way to define a cost of information. One could also specify that X is a noisy

observation of the vector Y, X = Y + ε, with ε i.i.d. normal and with a variance

that can be reduced according to a cost schedule. Such approaches to specifying

information costs can be appropriate in applied work where there are measurable

costs to information acquisition. Drilling an exploratory oil well or commissioning

a marketing survey are quantifiably costly actions that generate information, for

example.

But even when such direct costs of generating information are present, decision-

makers may not make full use of available information because of limits on human
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abilities to translate a stream of information into a stream of actions. Rational inat-

tention studies this type of information cost. It may be difficult to cleanly separate

the two kinds of cost, so studying information costs without making this distinc-

tion, as do Caplin and Dean (2015), may be useful, but studying the effects of the

internal costs to an economic agent of processing freely available information is

nonetheless interesting.

Mankiw and Reis (2002), and Reis (2006) proposed an approach to modeling in-

formation frictions that assumes a cost to frequent updating of information . Agents

in this theory process no information until the time when they acquire perfect infor-

mation about the state of the world and change current and planned future actions.

Therefore at the time an action plan is formed, it reflects complete information,

while between these dates no information is acquired. Rational inattention in con-

trast implies continual collection of imperfect information. When the underlying

state is continuously distributed, rational inattention implies that it is never exactly

known. In many contexts the two approaches make starkly different predictions

about behavior.

III. WHY USE THE SHANNON MEASURE OF INFORMATION PROCESSING COST?

Economics studies how people behave as they interact with each other, nature,

and market signals. Our theories describe how changes in the environment, includ-

ing market signals, are translated into changes in people’s behavior. Shannon’s the-

ory measures information flow as the reduction in uncertainty about one random

quantity when some other random quantity is observed. If we think of the price

of an asset traded in a thick market as a signal, to which in principle economic be-

havior should respond, continual adjustment of economic behavior to the constant,

unpredictable changes in price would imply an implausibly high rate of flow of

information in Shannon’s sense. Recognizing this, and its broader implications for

the way we model economic behavior, seems like a good idea.
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One way to justify the Shannon measure is to start by accepting the idea that the

cost of information flow between two random quantities should be a function of

their joint distribution, then look for a measure that has appealing properties. The

Shannon measure of mutual information between two random variables X and

Y whose joint distribution is defined by a density function relative to a product

measure µX × µY is

I(Y, X) = E[− log
(

p(Y)
)
]− E[− log

(
q(Y | X)

)
]

=
∫
− log

(
p(y)

)
p(y) dµY(y)−

∫
− log

(
q(y | x)

)
q(y | x)dµY(y)r(x)dµx(x) , (1)

where the expectations are over both X and Y, p is the unconditional pdf of Y, q is

the conditional pdf of Y given X, and r is the unconditional pdf of X. E[− log(p(Y)]

is called the entropy of Y, so the measure can be interpreted as the expected reduc-

tion in entropy of Y from observing X. The base of the logarithm in this formula is

conventionally taken to be two, but using a different base just rescales the measure.

When base 2 is used, the unit of measure is bits, and when base e is used, the unit

of measure is nats.

This measure has the property that if X has two components, X1 and X2, The

mutual information between X and Y is the mutual information between X1 and

Y plus the expected value (over the distribution of X1) of the mutual information

between X2 and Y when we condition their joint distribution on X1. That is, when

we break available information into pieces defined by distinct random variables,

the information in the pieces can be added up.

It also has the property that it is unit-free. If we make a monotone transformation

of X or Y, there is no effect on I(X, Y).
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Under mild regularity conditions, these two properties uniquely define Shan-

non’s measure. Other measures of mutual information based on the joint distri-

bution have been proposed, but they lose one of these properties, usually the first

(Csiszár, 2008).

Notice that if X and Y are independent, I(X, Y) = 0. Also, though the formula in

(1) looks asymmetric, in fact it can be easily checked that I(X, Y) = I(Y, X), that is

that information in X about Y is the same as information in Y about X.

Aside from the possible appeal of Shannon’s measure based on its abstract prop-

erties, its usefulness is apparent in its ubiquity in modern electronic communica-

tion. We measure file sizes in bits and the speed of our internet connections in bits

per second. These bits are units of Shannon’s measure. Internet connections can

be based on fiber optics, electricity sent over copper wires, or radio waves. The

capacity of these connections to transmit information can be measured in bits per

second, regardless of the physics underlying their operation. The idea of rational

inattention in economics is to apply this same bits per time unit measure to the

transmission of observed external information, through a person’s sensory system

and brain, to an action.

This idea builds on Shannon’s notion of a “channel” and its “capacity”. A chan-

nel takes as input an element of an “alphabet”. In the simplest case the alphabet

might consist of zero and one. Or it might be A to Z, or an interval of real num-

bers. The channel’s definition specifies the conditional distribution of an output for

every possible value of the input alphabet. Since the mutual information between

the channel’s input and output depends on their joint distribution, while the chan-

nel’s definition specifies only the conditional distribution of output given input,

the rate of information flow through the channel depends on the distribution of the

input. The channel’s capacity is the rate of information flow through it when the

distribution of inputs is chosen so that the rate of information flow is maximized.
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Shannon’s coding theorem shows that regardless of the distribution of the random

variables we want to send through the channel, we can map them into sequences

of values of the channel’s alphabet in such a way that the rate of information flow

is as close as desired to the channel’s capacity.

In applying the idea of channel to human behavior, we assume that even though

market prices, advertising, weather, etc. are not measured in the “alphabet” of the

human nervous system, it may nonetheless be reasonable to suppose that people

map these inputs into actions efficiently, so that a common information-processing

shadow cost applies across reactions to all signals a person is reacting to.

IV. THE GENERAL INFORMATION-CONSTRAINED DECISION PROBLEM

While many of the most interesting potential applications of rational inattention

in economics are to dynamic decision problems, in this paper we focus on static

problems. There are previous papers discussing linear-quadratic dynamic prob-

lems (Sims, 2010, 2003), and Tutino (2009) has considered a finite state-space dy-

namic problem. Here we are interested in the emergence of discrete or reduced-

dimension behavior, and how it depends on the nature of uncertainty. To make the

analysis tractable, we stick to the static case, though it is most natural to think of

the problems here as repeated frequently over time.

All the examples we will discuss below are versions of a general problem, which

we can state as

max
f ,µx

∫
U(x, y) f (x, y) µx(dx) µy(dy)

− λ

(∫
log( f (x, y)) f (x, y) µx(dx) µy(dy)

−
∫

log
(∫

f (x, y′) µy(dy′)
)

f (x, y) µx(dx) µy(dy)
) (2)

subject to
∫

f (x, y) µx(dx) = g(y) , a.s. µy (3)
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f (x, y) ≥ 0 , all x, y , (4)

where x ∈ Rk and y ∈ Rn, µx and µy are σ-finite Borel measures, possibly but not

necessarily Lebesgue measure, f is the joint pdf of the choice x and the target y, g is

the given pdf for y, before information collection, U(x, y) is the objective function

being maximized, and λ is the the cost of information.

The first term in (2) is the expectation of U, and the second is the cost of in-

formation. (3) requires consistency of prior and posterior beliefs, and (4) requires

non-negativity of the pdf f . The formulation of the model as here, via the joint

distribution of x and y, is equivalent to a two-step formulation where the agent

chooses a signal Z with some joint distribution with X, then optimally chooses a

function δ that maps Z to a decision X = δ(Z), with the information cost applied to

the mutual information I(Z, Y) rather than I(X, Y). This should be clear, because

I(δ(Z), Y) ≤ I(Z, Y) for any function δ, and with the signal Z freely chosen we

could always just choose the signal to be the optimal δ(Z) itself. Choosing any-

thing else as signal that delivers the same δ(Z) can at best leave the information

cost unchanged, and certainly leaves the expected utility unchanged.

The objective function is concave in the measure on xy space defined by f , µy

and µx
3, and the constraints are linear, so we can be sure that a solution to the first

order conditions (FOC’s) is a solution to the problem. However the non-negativity

constraints can be binding, so that exploration of which constraints are binding

may make solution difficult.

Related problems have been studied before in the engineering literature. When

U(x, y) depends only on x− y and is maximized at x = y, the problem is the static

special case of what that literature calls rate-distortion theory. Fix (1978) obtained

3Expected utility is linear in this probability measure, and mutual information between two ran-

dom variables is a convex function of their joint distribution, so expected utility minus λ times the

mutual information is concave in the measure.
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for the quadratic-U case a version of our result in section VII.2, that bounded sup-

port for Y implies finitely many points of support for X. Rose (1994) uses different

methods, also for the quadratic-U case, and shows discreteness for a somewhat

broader class of specifications of the exogenous uncertainty than Fix. We believe

that our results for more general forms of objective function and for the multivari-

ate case are new.

The FOC’s of the problem with respect to f imply that at all values of x, y with

f (x, y) > 0 and g(y) > 0

U(x, y) = θ(y) + λ log
(

f (x, y)∫
f (x, y) dy

)
(5)

∴ f (x, y) = p(x)eU/λh(y) (6)

∴
∫

eU(x,y)/λh(y) dy = 1 , all x with p(x) > 0 (7)

∴
∫

p(x)eU(x,y)/λ dx · h(y) = g(y) , (8)

where θ(y) is the Lagrange multiplier on the constraint (3), p is the pdf of the

action x and h(y) = exp(−θ(y)) is a function that is non-zero where g is non-

zero, zero otherwise. At points x where f (x, y) = 0, the FOC’s require that the

left hand side of (5) be less than or equal to the right hand side. Note that if

p(x) =
∫

f (x, y) dy > 0, the right hand side of (5) is minus infinity wherever

f (x, y) = 0, so with U bounded above we can conclude that f (x, y) = 0 for a

particular x, y only if f (x, y) = 0 for all y, i.e. p(x) = 0.

At points x with p(x) = 0, the right-hand side of (5) is undefined. However we

can reparameterize f (x, y) as p(x)q(y | x) and take the first order condition with

respect to p. Since at points with p(x) = 0 the value of q(· | x) makes no marginal

contribution to the objective function or the constraints, the first order condition

with respect to p at points with p(x) = 0 becomes

max
q

E[U(x, y)− λ log
(
q(y | x)

)
− θ(y) | x] ≤ 0 . (9)
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These FOC’s do not take explicit account of the possibility of varying µx. Adding

or deleting a point x with non-zero µx probability is accounted for, since that can

be treated as setting p(x) to a zero or non-zero value at a point where µx(x) > 0. If

µx puts discrete probability π on a point x0, we can, though, derive an additional

FOC by considering changing the location of x0. If we change the location of x0

to a nearby x∗ 6= x0 that initially had probability zero (though possibly a non-zero

density value w.r.t. Lebesgue measure), while keeping the pdf of y | x0 and of y | x∗

the same, we leave the mutual information between x and y the same and continue

to satisfy the boundary condition (3), but we change the expected value of U. The

derivative of the expected value of U w.r.t. x0 when x0 is changed in this way is

µx(x0)
∫

∂U(x0, y)
∂x0

f (x0, y) dy , (10)

which then implies that E[∂U/∂x | x] must be zero at every point x0 that has pos-

itive probability. For the case where U is quadratic in X − Y, this is the familiar

requirement that the optimal X is the conditional mean of Y | X.

We discuss below in section VI details of how to determine conditions under

which the distribution of X in this problem’s solution are continuously distributed.

With the general problem statement and first-order conditions in hand, though, we

can proceed to discuss specific examples and their solutions.

V. EXAMPLES

In this section we present example decision problems and discuss their solutions,

reserving for the section VII more technical parts of the arguments supporting our

results. Some of our solutions are numerical, and the methods used to compute

them are described in appendix A.
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V.1. Linear-quadratic tracking in one dimension. To provide some intuition about

the nature of these results, we consider first an example where the mathemat-

ics are relatively simple, so we can see how discreteness emerges. This is a one-

dimensional tracking problem with quadratic loss. It is the canonical framework

for Gaussian rate-distortion theory in the engineering literature. It is also similar to

many empirical models in economics, where an agent is modeled as trying to keep

a choice variable close to its optimal value, except that here rather than postulating

physical adjustment costs, we postulate information processing costs.

Formally the problem is to choose the joint distribution of the decision variable

X with the exogenous uncertainty Y so as to maximize

−1
2 E[(Y− X)2]− λI(X, Y),

where λ is the cost of information in utility units and I(X, Y) is the mutual infor-

mation between X and Y. It is well known that if the fixed marginal distribution

of Y is Gaussian in this problem it is optimal to make the joint distribution of X, Y

Gaussian4. Furthermore if σ2
y is the unconditional variance of Y and ω2 is the condi-

tional variance of Y | X (which is of course constant for a joint normal distribution),

I(X, Y) = 1
2 log(σ2

y /ω2). It is also optimal to make E[Y | X] = X.

With no information cost, the solution is trivially to set Y = X, so that X and Y

both have full support on R. With non-zero information cost, we can use the char-

acteristics of the solution we have laid out above to see that the problem becomes

max
ω
−1

2 ω2 − λ(log σ2
y − log ω2) . (11)

Taking first-order conditions it is easy to see that the solution is ω2 = λ. This is

reasonable; it implies that with higher information costs uncertainty about y in-

creases, and that as information costs go to zero, uncertainty about Y disappears.

It makes the marginal distribution of X normal and gives it full support on the real

4See Sims (2003) or Cover and Thomas (1991).
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line. However, the solution only applies when ω2 < σ2
y . It is not possible to specify

a joint distribution for X, Y in which the conditional variance of Y | X is larger than

the unconditional variance of Y. So for λ > σ2
y , we instead have the trivial solution

X ≡ E[Y].

In this example we have just one, trivial, possible form of discrete distribution for

X: a discrete lump of probability 1 on E[Y]. Otherwise, X is normally distributed,

with variance smaller than that of Y. We can think of this solution as implemented

by the decision-maker observing a noisy measure of Y, Y∗ = Y + ε, where ε is itself

normal and independent of Y. X is then a linear function of Y∗, and λ determines

the variance of ε.

Now consider a problem that seems nearly the same. We alter it only by spec-

ifying that the given marginal distribution of Y is not N(0, σ2
y ), but that normal

distribution truncated at ±3σy. The probability of observations in the 3σy tail of

a normal distribution is .0027, so this problem is in some sense very close to the

one without truncation. We could consider just using the previous solution as an

approximation — observe Y∗ = Y + ε and set X to be the same linear function of

Y∗ as in the un-truncated problem. And indeed this would give results very close

to those of the optimal solution.

We show below, though, (and this result appeared earlier in the engineering lit-

erature for this model) that whenever the support of Y is bounded in this problem

with quadratic loss, the support of X is a finite set of points. How can this be?

If information costs are small, the truncated-Y solution gives the X distribution

finitely many points of support, but a large number of them. The weights in this

fine-grained finite distribution have a Gaussian shape. The distribution, though

discrete, is close in the metric of convergence in distribution to the distribution for

X in the untruncated solution.
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If information costs are moderately large, though, so that the untruncated solu-

tion is not reduced to X ≡ EY, the distribution for X can have a small number of

points of support, so that it looks quite different from the distribution of X in the

untruncated solution. For example, suppose EY = 0, σ2
y = 1 and λ = .5. Then

the untruncated solution makes ω2 = .5 and gives X a N(0, .5) distribution. If we

set X = .5(Y + ε), with ε ∼ N(0, 1) and independent of Y, we would be using the

same formulas as in the untruncated case, and would achieve almost the same re-

sult, E[(Y− X)2] = .49932 instead of .5 and information costs no higher than in the

untruncated case. X would be continuously distributed, not exactly normal, but

still with the whole of R as support.

But the optimal solution with this truncation and this cost of information has

just four points of support for the X distribution: -1.0880, -.1739, .1739, 1.0880. It

achieves almost exactly the same E[(Y − X)2] as in the untruncated case5, while

using about 4% less information. The naive use of the untruncated solution wastes

information capacity, because in the rare cases where the observed noisy signal Y∗

is much above 3, it is giving us extremely precise information in the truncated case:

the true value of Y must be very near 3 if Y∗ is much greater than 3. There is no point

in achieving such low conditional variance for this particular type of rare event, so

the optimal solution uses that information capacity elsewhere. This explains why

the distribution of X has smaller support than Y’s in the optimal solution for the

truncated problem.

The conditional density functions for Y at each of the four points in the X distri-

bution, i.e. the four possible distributions of posterior beliefs about Y, are shown

in Figure 1. They are weighted by the probability of the corresponding X value,

so that at any point on the x axis the sum of the heights of these weighted pdf’s

5These numbers are based on solving the problem numerically with a grid of one thousand points

between -3 and 3. They may not be accurate to more than about 3 decimal places as approximations

to the continuously distributed problem.
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FIGURE 1. Weighted conditional pdf’s for Y in tracking problem, λ = .5

is exactly the unconditional truncated normal density for Y. While the four densi-

ties are of course not exactly normal, they are of the same general shape as normal

densities, and have roughly the same .5 variances as do the conditionally normal

densities for the untruncated problem. We might ask what would happen if the

decision-maker mistakenly used the results of the truncated problem when in fact

the distribution of Y is not truncated. For example, we can suppose that the signal

is one of the four points of support in the optimal truncated solution when |Y| < 3,

but 0, or “ERROR”, when |Y| > 3. In these rare cases, then the decision-maker

would simply set X = 0.6 Losses would be slightly higher than in the smooth

solution for the untruncated case, but by less than 0.3%.

6More formally, we would make the joint distribution of X and Y conditional on |Y| < 3 match

the solution of the truncated problem, while making that joint distribution simply a lump of proba-

bility on X = 0, independent of Y, conditional on |Y| > 3.
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These two problems are very similar in objective function and initial distribution

of uncertainty. Their solutions are very similar in terms of objective function value

and conditional distribution of the unknown Y. The solutions are also close in the

sense that either problem’s solution can be applied to the other problem with little

deterioration in objective function value. Nonetheless the solutions differ discon-

tinuously in the marginal distribution of the choice variable X. This kind of result

reappears in the other, more complex setups we examine below, and is inherent in

the structure of these problems. In some examples we find there are no solutions

with continuously distributed X, but in others we find there is a family of densi-

ties for Y and corresponding densities for X for which the optimal solutions makes

X continuously distributed. Where this is true, though, small perturbations of the

problem again make the optimal distribution for X discrete.

The message of the paper, then, is not that continuously distributed behavior can-

not emerge from decision problems with an information constraint. Indeed, stan-

dard frameworks like linear-quadratic problems imply continuously distributed

solutions in many cases. But discretely distributed behavior is optimal in a wide

class of cases, and often will be close to optimal even in problems where the exact

optimum is continuously distributed.

V.2. A risk-averse monopolist. This next example has more interesting economic

content and is outside the range of cases considered in the engineering rate-distortion

literature.

Suppose a risk-averse monopolist faces a demand curve Q = q(X) and a constant

returns production technology with unit cost C, where C is a random variable. We

use X instead of P as notation for price, to avoid confusion with probabilities and

probability densities. Suppose the monopolist has logarithmic utility for profits.

With a utility cost λ per nat (the unit of measurement for mutual information when

log base e is used in defining it) of transmitting the information in C to a choice of
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X, the problem becomes

max E
[
log
(
(X− C)q(X)

)]
− λI(X, C) , (12)

where the maximization is over the joint distribution of X and C. We assume C

is non-negative and continuously distributed with pdf g. This is a special case

of our generic decision problem with information cost as described in section IV.

To proceed further we need to assume an explicit form for the demand curve q().

Consider q(x) = x−θ for x > 0.7

In section VII.3 we provide an analysis of this problem and show that there is

a class of continuously distributed solutions for X when the density g(·) of C is a

certain mixture of scaled beta distributions. This lets us reach some general conclu-

sions that can be summarized as asserting that any kind of distribution for X can

emerge if we can freely vary the distribution of C, but distributions for X whose

support contains intervals of the form (0, T) can emerge only with a restricted class

of C distributions. More specifically:

(i) For any combination of distribution of price X on R+, demand elasticity

θ > 0, and information cost λ > 0, there is a density function g(·) for the

exogenous cost variable C that makes the given X-distribution the optimal

distribution for that combination of θ, λ, and g. In other words, every kind

of distribution of X is possible as a solution to the problem, as we vary the

distribution of C over all continuous distributions on R+.

(ii) For any given g(·) and θ, even if the problem admits a solution with con-

tinuously distributed X for some value of λ, as λ → 0 eventually the solu-

tion does not have full support on any interval of the form (0, T), for any

0 < T ≤ ∞.

7Matĕjka (2008) studies this problem with a risk neutral monopolist and the same demand curve.

The mathematics of this example with the logarithmic utility is close to that of the two-period sav-

ings problem in Sims (2006b).
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(iii) When there is an a priori known upper bound c̄ on cost C, any solution in

which X is continuously distributed over some interval of the form (0, x̄)

must have x̄ = c̄. This might seem counterintuitive, since with λ = 0 we

know that the solution is x ≡ θc/(θ − 1) > c, and indeed solutions often

make P[X > c̄] > 0, but when they do so the support of X never contains an

interval of the form (0, c̄).

(iv) If there is a known upper bound c̄ on C and E[C] > c̄(θ − 1)/θ, there is no

solution in which the support of X contains (0, c̄).

We have not been able to show that when X is not continuously distributed, it

must necessarily have countable discrete support, but in Proposition VII.5 we do

show that the support must be discrete and finite when the support of the cost

distribution is contained within an interval of the form (c∗, θc∗/(theta − 1). With

such a tight bound, the support of the X distribution lies outside the support of the

C distribution, and it turns out this implies discreteness.

We solve this problem numerically with the distribution of C a Beta(4,4) distri-

bution scaled to cover the interval (0,10). The prior distribution for costs is thus

symmetric around c = 5. It is in the family of distributions shown in section VII.3

to be consistent with continuously distributed optimal X, but only for λ = 1/3,

θ = 7/3, and the distribution of X concentrated on the single point x = 10, which

obviously itself has a discrete distribution for X. When θ = 1.5, and λ = .05, full

support on a (0, T) interval is impossible because the mean of the B(4, 4) distribu-

tion scaled to (0, 10) is 5. Since this exceeds 10 · (θ− 1)/θ = 31
3 , a solution with full

support on (0, 10) is impossible by iv above.

We find numerically that X is distributed on a support of 6 points: 0.845, 1.790,

3.254, 5.648, 9.796, and 17.061, with probabilities .000028, .000385, ,00334, .025203

.170879, and .800163. The weighted and unweighted conditional densities for C

given these 6 values for the decision variables are shown in Figures 2 and 3. When
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the densities are weighted by the probabilities of the corresponding X values, two

of the four are essentially invisible because weights on them are so small. But they

imply very precise knowledge that c is small and in each case certainty that C does

not exceed the corresponding value of X.

Because we necessarily approximate the Beta(4,4) distribution with a discrete

grid, it is possible, even likely, that the fully optimal solution for the continuous

version of the problem has a countable infinity of points of support with a limit

point at x = 0 and probabilities converging rapidly to zero as the support point

approaches zero, but because these additional support points would have very low

probability, our six point solution (which is indeed optimal for our grid of 1000

equi-spaced points of support for approximating the Beta(4,4)) will be very close to

optimal even in the truly continuous case.

This pattern of results emerges because profits are unbounded above as costs ap-

proach zero, while utility is minus infinity if profits become negative. Very precise

information about C, including an upper bound on it, is therefore extremely valu-

able when C is in fact very low. The information-constrained monopolist simply

sets a high price, enough to ensure a profit even if C is at its maximum possible

level, 80% of the time, with his beliefs about C in this case spread broadly over the

interval 3 to 10. But on the rare occasions when C is low, he collects precise informa-

tion about it, including a firm upper bound. Observing his behavior over time, we

would see extended periods of constant prices, with occasional isolated instances

of sharply lower prices. Of course since without information costs price would be

θC/(θ − 1), it would in that case have a distribution that mimicked the form of

the cost distribution, a density centered centered at 15 and spread symmetrically

between zero and 30. Someone observing the information-constrained behavior of

the monopolist would, not accounting for the effects of information costs, draw
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mistaken conclusions about the distribution of costs or the elasticity of demand, as

well of course about the size of “menu costs” of changing prices.
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FIGURE 2. Weighted conditional pdf’s for Y in risk-averse monopo-

list problem, λ = .05, θ = 1.5

V.3. Multivariate linear-quadratic tracking. This again is a classic problem from

the engineering rate-distortion literature. We consider it here because it is the sim-

plest case where in a multivariate problem, the support of the marginal distribu-

tion of the decision variable becomes measure-zero for some range of information

costs, while not being a countable set of points. It is also close to models with an

economic interpretation. For example, a consumer trying to choose a consumption

bundle close to an optimal bundle, when the optimal bundle is varying because of

changing prices and incomes. Or a monopoly price setter producing multiple prod-

ucts with stochastically varying costs, trying to keep the prices close to an optimal

target defined by the costs and demand.
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FIGURE 3. Unweighted conditional pdf’s for Y in risk-averse monop-

olist problem, λ = .05, θ = 1.5

The problem is to choose the joint distribution of X, Y to maximize

− 1
2 E[‖X−Y‖2]− λI(X, Y) , (13)

where X and Y are n-dimensional vectors and Y has a given N(0, Σ) distribution.

Of course again here the solution when λ = 0 simply sets X ≡ Y and the distri-

bution of X is also N(0, Σ) and thus has full support on Rn. If Σ is a scalar matrix

σ2 I, the solution is just to apply the solution for the one-dimensional problem of

section V.1, one dimension at a time, allocating information capacity equally to all

components of Y.

But if Σ is diagonal, but with unequal variances on the diagonal, the support of X

becomes measure-zero in Rn for a certain range of values of λ, and does so without

being reduced to a point. This result is the simplest form of what is known in the

engineering literature as the “water-filling” result. Using σ2
i to denote the variance
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of the marginal distribution of Yi and ω2
i to denote the conditional variance of Yi

given information, the objective function is

− 1
2 E

[
n

∑
i=1

ω2
i − λ(log(σ2

i /ω2
i )

]
. (14)

The interior solution would make ω2
i constant across i, and for low information

costs this is indeed the solution, with low values of ω2
i corresponding to low value

of information costs λ. But as in the one-dimensional case, ω2
i > σ2

i is impossible.

If this constraint is binding for all i, we are back to the trivial solution with no

information collected and X ≡ E[Y]. But for intermediate values of λ the solution

will set ω2
i equal to a constant ω̄2 for those values of i with σ2

i > ω̄2, and leave ω2
i =

σ2
i where ω̄2 > σ2

i . In other words, it is optimal to collect information in these cases

only about the Yi variables with the largest variance. For very high λ, the support of

X is the single point X = E[Y]. As λ falls, initially information capacity is used only

to reduce uncertainty about the Yi with the largest variance. For such a solution,

the support of X is on a one-dimensional subspace of Rn. As λ drops further,

information is collected about additional dimensions of Y, giving the distribution of

X higher dimension, but still measure-zero, support, until finally λ falls far enough

that information is collected about all dimensions and the distribution of X has full

support.

Low-dimensional support for X can take other forms. If Σ is scalar, and we alter

the problem by making Y truncated normal rather than normal, the solution must

give X support that contains no open sets, as was the case in the one-dimensional

version of this problem. But in this case the nature of the support of X depends on

the shape of the truncation boundary.

If Y is bivariate N(0, I), truncated at ‖Y‖ ≤ 3, the support of X is likely to be one

or more circles in R2. We show in proposition VII.3 that if there are any solutions to

the problem that concentrate on a countable collection of points, then there are also
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solutions for which the support of X is a countable collection of circles centered at

the origin. On the other hand, this result depends on the fact that the truncation

is itself at a circle around the origin, so the problem is rotationally symmetric. If

instead the N(0, I) distribution for Y is truncated at a rectangle, numerical calcula-

tions show that the solution for X is likely to be supported at a finite set of isolated

points in R2.

A numerical solution for the optimal X, Y joint distribution constrained to finitely

many points of support cannot of course deliver the continuously distributed so-

lution we know exists in the case of a symmetric truncation. But we can see the

nature of the solution by calculating, for the case λ = 2/3, a solution with 10 points

of support. All the X values in this solution turn out to lie on the circle of radius

.7604 about the origin, and the points are equally spaced around that circle and

have equal probabilities. Figure 4 shows the 10 conditional densities for θ | X,

the angle in the polar coordinates for Y | X = x, for the 10 optimal X values. A

solution allowing 12 points of support concentrated X on the same circle, and pro-

duced the same value of the objective function to 12 digits.8 The conditional pdf of

the length of the X vector (the first polar coordinate) is identical over all 10 points

of support, and thus also equal to the unconditional pdf for the vector length. In

other words, it is optimal here to collect information only about the relative size

of the two components of Y, not on their absolute size. Furthermore, the fact that

the 10 and 12 point solutions produce the same objective function value strongly

suggests that here the solution with X continuously distributed would simply be a

mixture of the solutions with 10 or 12 points of support, with the same conditional

distribution of Y | X for every value of X in its support.

With the same objective function and the same value of λ, but with the truncation

at the square bounded by ±3 for both components of Y, the solution concentrates

8Details about the numerical methods are in appendix A.
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FIGURE 4. Conditional pdf’s of polar angle, 2d tracking with sym-

metric truncation

on 9 points, arranged in an equally space grid on a square centered at zero and

with side 1.59, with probability .25 at the center, .125 at the centers of the four sides,

and .0625 at the four corners. Figure 5 shows the points of support for the two

truncations. The dark squares are the points of support when the truncation is to

the square, and their areas are proportional to the probability weights. The small

circles are the 10 equi-probable points of support with the circular truncation. Note

that the truncations boundaries, −3 < x < 3, −3 < y < 3 for the rectangular case

and ‖x‖ < 3 in the circular case, lie far outside the boundaries of the graph in both

cases.

In this problem, arising from just a slight truncation applied to a problem that we

know has a solution with continuously distributed X, there is, as might be expected,
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FIGURE 5. Support of x for 2-D tracking with square and circle truncation

Note: The squares show the points of support with truncation at ±3 in both directions. Their areas
are proportional to the probability weights on the points. The circles are the 10 equal-weighted
points of support for the solution with truncation at ‖x‖ < 3. In both cases information cost λ is set
at 2/3 and the exogenous uncertainty to be tracked is N(0, I).

only a fairly narrow range of values of λ that produce neither a trivial solution with

all probability concentrated at X = EY = 0 nor a solution with very many points

of support that is close in distribution to the solution of the untruncated problem.

With λ = 1, the solution to either form of truncated problem reduces to X ≡ 0.

As λ decreases to .5 or less the number of points of support in the solution rapidly

increases.

V.4. Portfolio choice. Here we consider a problem that has an interesting eco-

nomic interpretation, a non-quadratic objective function, and a multi-dimensional
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choice vector. We show in VII that the solution necessarily gives X support contain-

ing no open sets, but have not been able to rule out solutions that are continuously

distributed on lower-dimensional sets. We display numerical solutions that turn

out to give X support on a finite set of points.

The problem is

max E[θ′(Y + Z)− 1
2(θ
′(Y + Z)2]− I(θ, Y)] (15)

subject to

θ′1 = 1 , (16)

where θ is a vector of portfolio weights, summing to one and Y + Z is a vec-

tor of random yields, of the same dimension as θ. Before information collection,

Y ∼ N(µy, Σy) and Z ∼ N(0, Σz), with Y and Z independent. Z is intrinsic un-

certainty that cannot be reduced. Y is freely available information that can be pro-

cessed and translated into a choice of θ only at an information cost I(θ, Y). There

is no restriction on short sales or borrowing, so the elements of θ can be positive

or negative. This framework might describe an individual investor who does not

respond to every available increment of information about available investments,

or at a very different time scale, to a professional high-frequency trader receiving

market information over a costly data connection billed in bits per second.

We display two numerical solutions. Both are for the case of three available se-

curities, with the first security risk free. In the first, the two risky securities have

a higher expected yield, while in the second the risky securities have the same ex-

pected yield as the riskless one. When the risky securities have a higher uncondi-

tional expected yield, it will be optimal to hold some of both even when information

about Y makes conditional expected yield higher in one of the two. Furthermore,

holding both in roughly equal amounts reduces variance. As a result, in this case

it is optimal to collect no information, simply borrowing to invest equally in both
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risky securities, unless information cost becomes quite low. And when information

cost does become just low enough, the optimal solution still has near-equal posi-

tive weights on the two risky securities about 95% of the time, using information

capacity mainly to identify rare cases where one of the risky securities has a high

enough relative yield to justify shorting the other (which occurs about 4% of the

time in our example) and even more rarely (about 0.7% of the time in our exam-

ple) shorting both risky assets while holding large amounts of the riskless asset.

Investors behaving this way would, over time, appear usually to be making little

or no change in their portfolios in response to available information about relative

yield, but would in rare conditions make large portfolio changes, shorting risky

investments to hold large amounts of a safe asset.

When we make the expected yield on both types of securities the same, informa-

tion starts being used at higher levels of the cost of information, and it is used to

invest long or short in the three assets more or less symmetrically. In repetitions

of this decision process over time, investors would be seen to be more frequently

changing their portfolios than in the first case. This pattern of behavior might be

the starting point of a model predicting different market volatility when, as at the

zero lower bound on nominal rates, expected returns on risky and riskless assets

converge.

In both cases we set µy = .03 for the risky securities. We make Σz diagonal,

with 0 at the upper left (making the first security risk free) and .0003, implying a

standard deviation of .0173, as the value of the other two diagonal elements of Σz.

The difference between the two cases is that in the first we set the first element of

µy, the return on the risk-free security, to .02, implying a higher expected return on

the risky investments. while in the second we set it to .03, matching the expected

return on the risky securities.
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Results for two numerical solutions are displayed in Figures 6 and 7. The in-

formation cost is set lower for the case with riskless yield below the risky yield,

because at the higher cost used for the equal-expected-yield case the solution with

lower riskless yield is the trivial solution with no information collected. On the

other hand at the lower information cost used for the other case, the solution with

expected yields equal has 8 points of support, with weights on the two risky secu-

rities nearly, but not exactly, lying on a circle.
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FIGURE 6. Portfolio weight distribution: risky yield higher

Note: Both the irreducible component and the reducible components of uncertainty for the risky
assets have standard deviation .0173 in all cases. Expected yields are .02 for the riskless asset and
.03 for the risky assets. Contour lines are for a smoothed density formed from 400 simulated draws
of optimal portfolios with zero information costs. Dark circles are centered at the 7 points of support
of the distribution of optimal portfolios with information cost λ of 0.1. Circle areas are proportional
to the probability weights of the portfolios.

Figure 8 shows the level curves of the joint pdf’s of the two risky asset yields for

each of the 7 points of support in the distribution of portfolio weights shown in

Figure 6. The first four portfolios in the table have high probability and show small
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FIGURE 7. Portfolio weight distribution: equal expected yields

Note: See note to Figure 6. Here the distribution with information costs has equal weights on the
four points of support. The expected yields are .03 on all three assets. Information cost λ is .167.

variations in portfolio weights. They correspond to the four sets of level curves

drawn with dotted lines in the figure. The other three portfolio allocations occur

with much lower probability, and they correspond to the three pdf’s in the plot

drawn with solid lines. As one would expect, these three low-probability portfo-

lios, since they imply shorting one or both risky assets, imply relatively low yields

on one or both assets. It is important to recognize, though, that the pdf’s all show

some overlap. That is, the investor does not choose to acquire information that

partitions the space of possible yields. Also note that the pdf’s shown here must

sum to deliver the given marginal pdf, which is that of two independent normal

distribution with mean .03 and standard deviation .01732. The high-probability

conditional densities therefore have nearly circular level curves, nearly matching
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FIGURE 8. Conditional pdf contours, λ = .1, riskless return lower

those of the marginal density in shape, while the low-probability conditional den-

sities are twisted away from Gaussian elliptical forms.

Note that investors behaving according to the Figure 6 solution would mislead

researchers trying to interpret their behavior with a “sticky information” or an

“menu cost” approach. The four larger circles have probabilities .32, .32, .16 and

.16. Thus in i.i.d. repetitions of the decision problem, the decision-maker would

in most periods make a portfolio change, but very rarely make a large portfolio

change. The small shifts in portfolio are reactions to weakly informative signals,

which therefore contribute little to information costs. Menu cost or sticky infor-

mation models would interpret the portfolio shifts that occur as reflecting full in-

formation at the time of change. Since the changes are small (because in fact the
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information the changes respond to is weak), the menu cost or sticky information

model would need to suppose high risk aversion to explain the small size of the

portfolio shifts. But then on the rare occasions when the investors get a signal of

very low returns on one or both risky assets, they heavily short one or both risky

assets, making their overall portfolio quite risky. This would seem to contradict

high risk aversion. Of course in the rational inattention model, the frequent small

changes do not reflect low risk aversion, just small amounts of information being

collected most of the time.

VI. SOLVING THE STATIC INFORMATION-CONSTRAINED DECISION PROBLEM

From (6) we can see that eαU(x,y)h(y) must be the conditional pdf of y given x,

and therefore for every x with p(x) > 0,

C(x) =
∫

eλ−1U(x,y)h(y) dy = 1 . (17)

If U(x, y) is analytic in x on some open set S, then there are various combinations

of assumptions on g, the marginal density of y, and on the behavior of U as a

function of y that will allow us to conclude that C(x) is analytic in x. In an economic

application, putting together the regularity conditions is the central concern, but it

is worthwhile understanding first how analyticity of C(x) leads to the dimension-

reduction results.

Proposition VI.1. Suppose C : Rn → R is analytic on a connected open set S ⊂ Rn and

B = {x | C(x) = 1}. If f : Rk → S is analytic on Rk, then either f (Rk) lies entirely

within B, or f−1( f (Rk) ∩ B) contains no non-empty open sets. If k = 1 and f (R) is not

contained in B, f−1( f (Rk) ∩ B) consists of a countable set of points with no limit points.

Proof. A function analytic on an open set S can be constant on a connected open

subset of S only if it is constant on all of S. The mapping C( f (·)) from Rk to S is

itself an analytic function, and f (Rk)∩ B is a set on which this mapping is constant.
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Thus that set either is included in B (so the mapping is constant on Rk) or contains

no open sets in its inverse image. If x is one-dimensional, C( f (·)) is an analytic

mapping from R to R. Such a mapping cannot be constant on any infinite set that

contains a limit point, unless it is constant on the whole of its domain. So in this

case f (R) ∩ B is either contained in B or consists of a countable set of points. �

The interpretation of this proposition for our decision problem runs as follows.

Assuming the problem makes C() analytic, the set B = {x | C(x) = 1} contains the

support of p(·), the density function of the decision variable x. Therefore if x is one-

dimensional and unconstrained, then either B = S, in which case the support of the

distribution of x in the optimal solution can be any subset of R, including possibly

the entire real line, or B is not the whole of S, in which case it is a countable set of

points with no limit points in S. If B’s closure is a subset of S, then it, and hence the

support of p(x), consists of a finite set of points. In higher dimensional problems,

where x ∈ Rn, B will either be all of Rn or a set containing no open subsets. Even

where B is bounded, this does not necessarily mean that the support consists of

discrete points. For example, C(x) = x2 defines an analytic function on R, and

C(x) = a for each a defines a set with 0, 1, or 2 discrete points as elements. But

C(x, y) = x2 + y2 is an analytic function on R2, and for it C(x, y) = a defines a

circle for positive values of a — a set that contains no open subsets of R2. Note

that any straight line in R2 intersects a circle in at most two points. This fits the

proposition’s conclusion that any analytic function f mapping R to S maps R to a

set that either is inside B or intersects B in a countable number of points. Here B is

the circle and the straight line is f .

This means that, for example, when C(·) is not constant, while a circle is a possi-

ble shape for the support of x in R2, a square is not. A square, or any polygon, has

sides that are segments of unbounded straight lines in R2. C() evaluated along a

straight line passing through that segment would be an analytic mapping from R
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to S whose inverse image contained an open set on which it was constant. But by

construction the line is in B only along the segment, and hence the mapping would

not be constant, which is impossible.

When considering whether solutions to particular economically interesting de-

cision problems must give the distribution of the decision variable finite support,

one can proceed by checking two conditions: Is C(·) in (17) analytic? and can it be

constant? In proving that it cannot be constant, sometimes it may be possible to

show that the function h(·) in (7) is uniquely defined by that equation. That equa-

tion is a Fredholm integral equation of type 1, which is well known9 to require a

case by case approach to solution. In some cases the equation has a unique solution

for a wide class of g(·) functions given some side conditions on U. Then marginal

densities that cannot be generated as

g(y) =
∫

p(x)eU(x,y)/λ dxh(y)

must, if C(·) is analytic, imply support for X containing no open sets. In other cases

there may be no h(·) that satisfies (7) for all X in S and a direct argument that C(·)

cannot be constant is required.

We apply these ideas in the proofs in section VII below.

VII. DETAILED ARGUMENTS

VII.1. Sufficient conditions for analyticity of C(). A result that is useful in prov-

ing analyticity of C() in many cases is

Proposition VII.1. Suppose

(i) for every y, v(x, y) : Rn ×Rm → R is analytic in x over the domain (i.e., open

connected set) S ∈ Rn (with S not varying with y);

9See, e.g, (Kythe and Puri, 2002)
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(ii) for every y v(x, y) as a function of x can be extended to the same complex domain

S∗ ⊃ S;

(iii) and v(x, y)h(y) is integrable jointly in x and y.

Then
∫

v(x, y)h(y) dy is analytic in x on S.

Proof. Functions on a complex domain in C that integrate to zero around circles are

the analytic functions, and this extends coordinate by coordinate to multivariate

analytic functions on domains in Cn. (See Krantz (1992, definition IV, p.5). So in

our case v(x, y)h(y) integrates to zero, around circles in S∗, for each x-co-ordinate

for each value of y. Fubini’s theorem lets us interchange orders of integration for

integrable functions, so
∫

v(x, y)h(y) dy is analytic on Cn, and an analytic function

on Cn is real analytic when restricted to Rn. �

VII.2. Tracking. When the objective function can be written as U(x, y) = V(x −

y) the integral equations in the first order conditions can be studied with Fourier

transforms, because they become convolutions. That is, we can write (7) and (8) as∫
eV(x−y)/λh(y)µy(dy) = (eV/λ ∗ h)(x) = 1 (18)∫

p(x)eV(x−y)/λµx(dx)h(y) = (p ∗ eV/λ)(y)h(y) = g(y) . (19)

The first of these, (18) always has as one solution a constant h(y) ≡ 1/κ, where

κ =
∫

eV(z)dz. The only assumption needed is that eV is integrable. Furthermore,

if the Fourier transform of eV is non-zero on the whole of Rn, this is the only h that

satisfies the equation for all x ∈ Rn. But if this h is going to provide the solution

for the decision problem, it must be, from the second equation (19), that p ∗ eV/λ =

g/κ. Thus full-support solutions must admit the interpretation that the random

variable Y is the sum of X and a “noise” random variable that is independent of

X and has a pdf proportional to eV/λ. We can see immediately then that if V is

bounded below, full-support solutions are impossible because eV/λ is not a pdf.

Furthermore, if V(x− y) > −∞ for all finite arguments and EV(x−y)/λ is integrable,
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the “noise” variable in the solution has all of Rk as support, and therefore no full-

support solution can exist for cases where the support of Y is bounded.

Both our one-dimensional (section V.1) and our multivariate (section V.3) track-

ing problems fit the assumptions here, because with quadratic V, eV/λ has the

shape of a normal density, and its Fourier transform therefore also has the shape of

a normal density. This then implies that any full-support solution with g() a nor-

mal pdf must make X and Y jointly normal. Whether this full-support solution is

possible then depends on whether κg̃/ ˜eV/λ, which would have to be equal to p̃ in

the solution, is the Fourier transform of a probability measure.

In the one-dimensional case, when Y is normal, κg̃/ ˜eV/λ is the Fourier trans-

form of a non-singular normal density if and only if the variance of Y exceeds the

variance of the normal density eV/λ/κ. In the multivariate case the correspond-

ing condition is that the covariance matrix of Y, less the covariance matrix of the

eV/λ/κ density, is positive definite.

When the support of Y is bounded, we can conclude immediately in these linear-

quadratic tracking problems that solutions with full support are impossible, be-

cause any solution that makes Y have the distribution of the sum of X and a nor-

mally distributed error with density eV/λ/κ necessarily implies that Y has full sup-

port. This result holds more generally for tracking problems, and we can also con-

clude that when full-support solutions do not exist for these problems, the solution

gives X a distribution with finitely many points of support. These results are sum-

marized in the following proposition.

Proposition VII.2 (Discreteness for tracking with bounded support). Suppose

(a) V() : Rk → R is analytic on all of Rk;

(b) M(a) = max‖x‖≥a V(x) satisfies M(a)→ −∞ as a→ ∞; and

(c) Y has bounded support in Rk.
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Then the solution to the information-constrained decision problem in 2 with U(x, y) =

V(x − y) gives X a distribution whose support contains no open sets. When k = 1, this

set consists of finitely many points.

Proof. g, as a probability density, must be integrable.
∫

p(x)eV(x−y)/λµx(dx) is con-

tinuous in y and therefore bounded below away from zero on the bounded sup-

port of Y. From 19, therefore, we can conclude that h is integrable. Therefore

C(x) =
(
eV/λ ∗ h

)
(x) is analytic, because the convolution of an analytic function

with any integrable function (indeed any finite measure) with bounded support is

analytic. Furthermore, for large enough values of x we have from the convolution

formula and the boundedness of the support of h that C(x) is a weighted average

of values of V(z) with ‖z‖ arbitrarily large. C(x) therefore goes to zero as x → ∞

and thus cannot be constant. The support of X, on which we must have C(x) = 1

is a set on which an analytic function is constant. Since C(x) is not constant on its

whole domain, it can be constant only on a set containing no open sets. If k = 1,

the set on which C(x) is constant cannot contain any sequences with limit points,

and since it must lie inside a bounded set, it consists of finitely many points. �

Consider the multivariate tracking problem, when the distribution of Y is ro-

tationally symmetric around some point (say 0) in Rn and the objective function

is E[−‖X−Y‖2]. The rotational symmetry implies of course that the support of

Y is itself rotationally symmetric. Suppose that there is an optimal solution that

concentrates probability on k values of X, {x1, . . . , xk} with probabilities
{

pj
}

and

corresponding conditional distributions of Y,
{

p(y | xj)
}

. Because of the rotational

symmetry, a solution that rotated each of the k values of X around the center of

symmetry through the same angle, while at the same time rotating the conditional

pdf’s of y through the same angle, would deliver the same value of the objective

function. But then so would any mixture of these two solutions. That is, we could

specify a probability π for the first solution and 1−π for the second, and the result
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would give the same objective function value and (because the expected reduction

in entropy of the Y distribution is still the same) the same information cost. But

then we can also construct arbitrary continuous mixtures of such rotated solutions

and again achieve the same objective function values. A continuous mixture of ro-

tated versions of a solution with finitely many points of support would have sup-

port concentrated on a finite collection of circles or (in higher dimensions) spheres.

Here is our conclusion as a proposition.

Proposition VII.3. In a rotationally symmetric multivariate tracking problem, if there is

any solution that gives X finitely many points of support, there are also solutions with

support a finite collection of spheres or circles.

VII.3. The risk-averse monopolist’s problem. Adapting the first order conditions

for the general decision problem discussed in section VI to this case gives us

p(c | x) = ((x− c)q(x))1/λ h(c) (20)

∴
∫ x

0
((x− c)q(x))1/λ h(c) dc = 1 for any x such that p(x) > 0 (21)∫

p(x) ((x− c)q(x))1/λ h(c) dµx(x) = g(c) all c , (22)

where h is some non-negative function and we are using the convention that p() is

a pdf, with its arguments showing what it is the pdf for.

With this pair of functional forms for utility and demand, it turns out to be pos-

sible to find a function h(c) that satisfies (21) for all positive prices x. If we guess

h(c) = Kcγ, we find∫ x

0

(
(x− c)x−θ

)1/λ
Kcγ dc = Kx

1−θ
λ +γ+1B

(
γ + 1,

1
λ
+ 1
)

, (23)

where B(·, ·) is the beta function. Thus by choosing K = 1/B
(

γ + 1, 1
λ + 1

)
and

γ = (θ − 1)/λ − 1, we can make the integral 1 for all values of x > 0. For the

beta function to be well defined, we require γ > −1, but this is guaranteed by
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the condition θ > 1, which is required in any case for the monopolist’s problem

to have a non-trivial solution. We show in proposition VII.4 that this h(c) function

is unique; no other h(c) can satisfy (23) over any interval of the form (0, c̄) with

0 < c̄ ≤ ∞.

This implies that for any distribution of x on x > 0, defined by a density function

π() and a measure µx, we can construct a function

g(c) =

∫ ∞
c π(x)

(
(x− c)x−θcθ−1−λ

)1/λ
µx(dx)

B
(

θ−1
λ , 1

λ + 1
) , (24)

and this distribution defined by π, µx will be the marginal distribution of x in the

monopolist’s problem if this g(c) is taken as the given marginal distribution on

costs c. So, as we vary the choice of g, every kind of marginal distribution for x

can emerge as solution to the problem — purely discrete with finite support, mixed

continuous/discrete, purely continuous, bounded support or unbounded support.

The result and its proof is in the following proposition.

Proposition VII.4. In the risk-averse monopolist problem of section V.2 where the utility

of profits is log
(
x−θ(x − c)

)
, if g(y) > 0 on an interval (0, T) with T > 0, and the

marginal density p(x) of X is positive on an interval (0, S) with 0 < S ≤ ∞, the h()

function that solves (21) for all x in (0, S) is h(c) = Kcγ, with γ = (θ − 1)/λ− 1 and

K = 1/ Beta(γ + 1, 1 + λ−1). This solution is unique.

Proof. That this form of h does solve the equation is directly verifiable by substi-

tuting it into the equation and evaluating integrals. That it is unique follows be-

cause if there were another function h∗() that also solved the equation, we could

set h̃ = h− h∗ and use (21) to derive the conclusion

x−θ/λ
∫ x

0
(x− c)1/λh̃(c)µc(dc) = 0 all x ∈ (0, S). (25)
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Denote by α the least positive real number such that 1/λ + α = m, where m is an

integer. Then we have

0 =
∫ y

0
(y− x)α

∫ x

0
(x− c)1/λh̃(c)µc(dc)dx

=
∫ y

0

∫ y

c
(y− x)α(x− c)1/λdxh̃(c)µc(dc)∫ y

0

∫ y−c

0
(y− c− x)αx1/λdxh̃(c)µc(dc)

=
∫ y

0
(y− c)mh̃(c)µc(dc)

∫ 1

0
(1− x)αx1/λdx

= Beta(α + 1, 1/λ + 1)
∫ y

0
(y− c)mh̃(c)µc(dc) , (26)

for all y ∈ (0, S), and by taking the mth derivative, we conclude that

0 =
∫ y

0
h̃(c)µc(dc) (27)

for all y ∈ (0, S), which implies that h̃(c) = 0 except on a set of µc-measure zero. �

However, (24) shows us that any solution corresponding to this choice of Kcγ

as the form for h(c) must be a weighted average of scaled beta densities. For each

price x, the conditional distribution of costs has the shape of a beta density, scaled to

the interval (0, x), but with the same shape parameters for each x. This means, for

example, that no density g for C with g(c) = 0 in some neighborhood of zero (i.e.

no density that implies a known lower bound on C) has this form. If C has support

with upper limit c̄, an X distribution that satisfies (24) must have the same upper

limit to its support. This might seem surprising, since without information costs it

is always optimal to make x = θc/(θ − 1), which is larger than c. And indeed it

often will be optimal to make P[X > c̄] > 0 — but in this case , because (24) cannot

hold, X cannot have full support from zero to its upper limit. A distribution for C

that admits a solution in the family described by (24) and has an upper bound c̄ to

its support must imply that C has a finite, but positive, expectation. For any given

θ, E[C/X | X]→ 0 as λ→ ∞. Therefore even if g does have the form (24) for some
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θ and λ, with upper limit to its support c̄, the optimal distribution of X must cease

to have full support on 0, c̄ for large enough λ.

Whenever the solution fails to fall in the mixture-of-scaled-betas class, it will

necessarily not have full support on a single interval. It may be that it always has

discrete support, but the strongest result we have obtained is that the solution gives

X support on a finite number of points whenever the support of the distribution

of C is contained in an interval (c1, c2) with c2 < θc1/(θ − 1), as shown in this

proposition.

Proposition VII.5. In the risk-averse monopolist problem of section V.2, if cost C has a

distribution whose support is contained within an interval (c1, c2) with θc1/(θ− 1) > c2,

the distribution of the optimal X is concentrated on a finite set of points.

Proof. The optimal choice of X if C were known would be θc/(θ − 1). With an

a priori known lower bound c1 on C, it can never be optimal to let X go below

θc1/(θ − 1). So if there is an upper bound c2 on C with c2 < θc1/(θ − 1) the sup-

port of the distribution of X will necessarily lie entirely above the support of C,

and in fact within the interval θc1/(θ − 1), θc2/(θ − 1). Because in this case X al-

ways exceeds C, the conditions i and ii of proposition VII.1 are satisfied, with the

role of v(x, y) in that proposition played by x−θ/λ · (x − c)1/λ. The h(y) from that

proposition is, from the first-order conditions, the function

h(c) =
g(c)∫

p(x)x−θ/λ(x− c)1/λµx(dx)
. (28)

The numerator of this expression is a probability density, hence integrable, and the

denominator is bounded away from zero for c ∈ (c1, c2) , because the support of

X lies above that interval. The v(x, y) function is itself bounded and the domain of

integration over c is bounded, so v(x, y)h(y) is indeed jointly integrable as required
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in iii. Therefore

∫ x

0
x−θ/λ · (x− c)1/λh(c)dc =

∫ c2

c1

x−θ/λ · (x− c)1/λh(c)dc (29)

is an analytic function of x on the interval containing the support of X. Note that

the interval over which this function is analytic is (c2, ∞), even though X has sup-

port bounded by a smaller interval. But this function must take the value 1 at every

point of support of X. If the support of X contains any of its limit points, the func-

tion would have to be one over the whole (c2, ∞) interval. But since θ > 1, it is also

clear that the function goes to zero as x → ∞ and is therefore not constant. Since

the support of X is inside a finite interval and contains no limit points, it must be a

finite set of points. �

VII.4. Singular support in the portfolio allocation problem. We require that Σz +

µyµ′y be strictly positive definite, which implies that there is at most one risk-free

asset and that that asset not produce a zero (i.e. -100%) return. There are no limits

on short selling, so θ is unbounded despite θ′1 = 1. The observable (with error)

randomness Y is, before information collection, distributed with pdf g(y), and has

bounded support10. The U(θ, y) for our canonical problem then becomes here

U(θ, y) = θ′y− 1
2(θ
′y)2 − 1

2 θ′Σzθ . (30)

We obtain this expression from the expected utility term in (15) by taking the ex-

pectation over Z, conditional on Y and θ. Then our C() function from Proposition

VI.1 is given by

C(θ) =
∫

exp
(

λ−1(θ′y− 1
2(θ
′y)2 − 1

2 θ′Σzθ
))

h(y) dy , (31)

10The bounded support assumption could be weakened to a requirement that g(y) decline

rapidly enough for large ‖y‖ that eb‖y‖2
g(y)→ 0 is integrable in y.
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where λ as before is the utility cost of information. The first order conditions also

give us

h(y) =
g(y)∫

p(θ) exp
(
λ−1(θ′y− 1

2(θ
′(y))2 − 1

2 θ′Σzθ)
)
dµθ(θ)

. (32)

Note that the denominator on the right side of (32) is bounded away from zero on

the bounded domain of g, so h() is integrable.

The function exp(U(θ, y))h(y) is clearly analytic in θ for any fixed y, over the

whole n − 1-dimensional hyperplane θ′1 = 1. It is jointly integrable in y and θ

because

∫
exp

(
− 1

2λ

(
θ′(Σz)θ

))
exp

(
λ−1(θ′(y)− 1

2(θ
′y)2)

)
h(y) dy dθ <∫

exp
(
− 1

2λ

(
θ′(Σz)θ

))
exp( 1

2λ )

(∫
h(y) dy

)
dθ . (33)

The integral in y in this expression is a finite constant. The Σz matrix is singular,

but θ ranges only over the submanifold where θ′1 = 1, and on that set θ′Σzθ =

σ2
z (θ

2
2 + θ2

3), where θ2 and θ3 are the portfolio allocations to the two risky assets.

−1
2 θ′Σzθ therefore goes to −∞ as ‖θ‖2 → ∞, and the term in θ therefore also has a

finite integral.

Now we can apply Proposition VII.1 to conclude that C() is analytic.

Then because as we have already observed C(θ) → 0 as ‖θ‖2 → ∞, C() is not

constant. We can conclude that it satisfies C(θ) = 1 only on a subset B of the

hyperplane θ′1 = 1 that contains no open sets and intersects straight lines in only

a countable set of points with no limit points.

VIII. CONCLUSION

The kind of model explored here, in which a decision-maker reacts to external

information subject to a tight information constraint, seems a natural one to apply

to the behavior of individuals reacting to fairly frequent and/or numerous eco-

nomic signals for which the consequences of imprecise responses are modest. This



DISCRETE ACTIONS IN INFORMATION-CONSTRAINED DECISION PROBLEMS 45

might be true, for example, of price-setters in retail establishments that must set

hundreds of prices every day in response to fluctuations in demand and costs for

all the items. It might also be true of day-to-day or month-to-month savings and

spending decisions of individuals, facing a potentially vast array of information

about asset markets.

We show that reduced dimensionality of the support of the decision variable

emerges in a large class of problems. Propositions VI.1 and VII.1 provide general

tools for assessing it, and we apply these tools in our examples. Proposition VII.2

shows reduced dimensionality in a broad class of cases where exogenous uncer-

tainty has bounded support and the objective is to keep a decision vector close to

the exogenous random vector. The reduced dimensionality results imply discrete

distributions in models with one-dimensional decision variables, and our numeri-

cal examples show that discreteness also commonly emerges in multivariate exam-

ples.

These models suggest that it is a mistake to identify times at which decision mak-

ers’ choices change as times at which they fully optimize in reaction to the current

state. Rationally inattentive decision makers as modeled here may change their

choices randomly, even when the state of the world (the draw from the g distribu-

tion) is unchanged. As modeled here, they acquire information about the true state

every period, but may nonetheless not change their behavior, even though the true

state is changing.

Rationally inattentive decision makers as in our portfolio allocation or risk-averse

monopolist examples may go for long periods making no change or small changes

in their behavior, then make a large and temporary change. Long periods of un-

changed behavior are not an indication that changing behavior is “costly”, frequent

small changes are not an indication that big changes are costly, and the large, rare

changes are not an indication that changing behavior is not costly. There is no cost
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of change at all in these models. Apparent inertia in the face of changing circum-

stances simply reflects the fact that with information flows valuable, it can make

sense to concentrate attention on the rare extreme draws of y, reacting little or not

at all to the usual small fluctuations about the central value.

If behavior like this explains even part of observed inertia and stickiness in eco-

nomic behavior, conclusions from models that use adjustment costs, menu costs,

or an ad hoc assumption of infrequent but complete information updates, could

give misleading conclusions. Formal solution of optimization problems with an in-

formation constraint is challenging, even in the most manageable linear-quadratic,

Gaussian uncertainty case, and extending the solution methods this paper has used

for non-quadratic, non-Gaussian settings to dynamic models is even more challeng-

ing. Furthermore, as our examples have shown, the nature of solutions to these

problems is in some dimensions sensitive to small changes in the problem.

It is therefore not realistic to expect that formal models incorporating rational

inattention can soon simply replace standard rational expectations models. On the

other hand, that rational inattention leads to muted, and sometimes to “sticky” re-

sponses to changes in the state of the world is a robust result. We should recognize,

therefore, that structural models of rational behavior under uncertainty that ignore

information processing costs, need to be taken with a grain of salt. Their implied

“costs of adjustment” may not correspond to actual components of technology or

utility functions.

APPENDIX A. NUMERICAL METHODS

There is a well-known algorithm in the rate-distortion literature, known as the

Blahut algorithm (Blahut, 1972), for calculating the optimal distribution of inputs

in a completely discrete version of the problem. In the notation of our (2)-(4), the

Blahut algorithm works with the case where Y has a given discrete distribution and

the points of support of the X distribution are given. The U(x, y) function can then
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be characterized as a fixed matrix, and the first-order conditions (7) and (8) are used

to generate a fixed-point algorithm that solves the optimization problem.

For the problems that interest us in this paper, though, both X and Y are best

thought of as having arbitrary distributions in finite-dimensional Euclidean spaces.

Even if the solution for X gives it finitely many points of support, as in many of our

examples, the location of those points of support is not known a priori. One possi-

bility is to choose a fine grid in both X and Y spaces. One can then either solve the

problem as a constrained maximization (constrained because of the requirement

that p(X) > 0) or use the Blahut fixed point algorithm. With either approach, the

need for a fine grid makes the problem high-dimensional (or inaccurately approxi-

mated). Furthermore, when the true solution has support on a fairly small number

of points, the solution with this grid approach is unlikely to make the discreteness

of the support cleanly apparent, as the points of support in the underlying contin-

uous problem will not usually lie exactly on the grid.

When Y is given a dense grid, to approximate a continuous distribution, but X

emerges as having a modest number (say 2-20) points of support, we have found

it efficient to solve by initially fixing the number of points of support of X and

iterating to a fixed point by methods analogous to the Blahut algorithm, but with an

added step of optimizing the location of the points of support at each round of the

iteration. The solution to the optimization problem, subject to the given bound on

the number of points of support, is a fixed point of this algorithm. Experimenting

with different numbers of points of support can lead us to be fairly confident that

we have found the optimum number.

One could also take an optimization approach, optimizing jointly over the prob-

abilities on the points of support and their locations, and we experimented with

this approach. However, in this problem when the number of points of support is

larger than required, the objective function is flat in some dimensions. Even when



DISCRETE ACTIONS IN INFORMATION-CONSTRAINED DECISION PROBLEMS 48

the number of points of support is correctly chosen, the objective function can be

close to flat in some dimensions, which makes gradient-based optimization slow,

erratic, and often inaccurate.

Our fixed-point algorithm can also be slow in terms of iteration count, but each

iteration is quick. When the number of points of support is larger than necessary,

the algorithm converges either with p(xi) = 0 on some points of support or with

some points of support showing the same values of xi and the same conditional

distributions for Y | X = xi, possibly with non-zero probabilities on several of the

equivalent xi’s. The probabilities from these repeated values of x in the solution are

then added up to obtain the implied solution with fewer points of support.

Like the Blahut algorithm, our algorithm does not guarantee a global solution.

Suppose we solve to find the optimum distribution of X over N0 points, but then

expand the model by adding extra points of support up to N > N0. If we start any

of these algorithms from the solution for N0 points, either by putting 0 probability

initially on the added points, or by giving them positive probability but repeating

them, none of these algorithms will leave the starting value. Furthermore, they

can converge to a solution with fewer points of support than the optimum. We

therefore always check apparently converged solutions by randomizing starting

values.

Our algorithm is implemented in four R functions, two of which are specific to

the particular problem being solved. One of the problem-specific functions takes a

vector of x values and a vector of y values and computes the corresponding value of

U(x, y). The other takes as one argument an nx× ny matrix of conditional probabil-

ities for y | x, where nx is the number of points of support of x (generally 2-20) and

ny is the number of points of support of y (usually on the order of 1000-2000 in our

examples). Its second argument is the ny× my matrix giving the my-dimensional

vector of y values at each point of support in the distribution of y. This function
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returns the optimal values of x at its nx points of support. It may be easiest to

understand what these functions do by looking at them in the simplest case, our

multivariate tracking problem, where they take easily understood form:

U2drec <- function(x,y) {

-.5 * sum((x-y)^2)

}

xfcn2drec <- function(ygivenx, y) {

return(ygivenx %*% y)

}

The first of these returns the squared Euclidean distance between y and x, and

the second returns the conditional expectation of Y at each of the points of support

of the X distribution, which is the optimal choice for these values with the given

conditional distributions.

These two functions, one giving the value of U, the other giving the optimal

choices of x for given conditional distributions on Y, are passed as arguments to

DiscFP(), which monitors the iterations, and in turn to DiscPObjXmv(), which does

the computation for each iteration.

All the examples we consider are ones where there is a closed form solution to the

problem of choosing the optimal x value given the conditional distribution of y | x,

or else the solution is a well-behaved one-dimensional zero-finding problem. If

this optimization itself required a time-consuming iterative solution, our approach

would require modification.

The full set of programs to compute the solutions in our examples is available in

the on-line appendix.
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