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ABSTRACT. In a recent paper Onatski derives a new criterion for existence and
uniqueness of solutions of rational expectations models. Specialized to finite or-
der models, the criterion is an improvement on the usual root-counting criterion,
but shares its main defect — there are models on which it gives the wrong answer.
Onatski argues that the models where the winding number gives the right answer
are “generic” — an open, dense subset of the space of all models. This could give
a mistaken impression. A sequence of models for which the new criterion works
that converges in Onatski’s metric to a model on which the criterion does not work
shows increasingly bizarre solution behavior as the limit is approached. In a metric
that treats models with very different solution behavior as very far apart, the se-
quence is divergent, not convergent. Models on which the winding number gives
the wrong answer will not in fact be extremely uncommon in economics, and they
are not in any substantively meaningful sense close to nicely behaved models for
which the winding number gives the right answer.

I. A BARE-BONES EXAMPLE

Here’s a linear rational expectations model that has no stable solution for which
the Blanchard and Kahn (1980) regularity conditions do not hold and that is not
“generic” in the terminology of Onatski (2006).

xt = 1.1xt−1 + εt (1)
Etyt+1 = .9yt + νt . (2)

εt and νt are exogenous, non-explosive stochastic processes. We are looking for
a solution that does not show exponential growth in any linear combination of
variables. Obviously here we have two unrelated equations. In the first, there
is an unstable root and no expectational term. No expectational effects can save
this equation from being explosive, with solutions growing at the rate (1.1)t. The
second equation has no unstable roots, yet includes an expectational term. There
is no way to import the unstable root from the other equation and make it produce
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determinacy in this one. Every solution for y can be modified by the addition to
the right-hand side of (2) of an arbitrary process ηt satisfying Etηt+1 = 0. The
Blanchard-Kahn rule, that the number of unstable roots must match the number of
forward-looking variables, is satisfied, yet there is no stable solution. The reason
is that the unstable root occurs in a part of the system that is decoupled from the
expectational equation.

It is true, as Onatski claims, that in a certain sense the system (1-2) lies “close” to
systems in which there is no such decoupling problem with the usual method of
matching unstable roots to counts of forward-looking variables. But perturbations
of the non-zero coefficients in the system will not do the trick, nor will perturba-
tions of the past or future zero coefficients on x in (1) or on y in (2) do the trick.
After all, each of the two separate equations is a one-variable system that is, by
itself, generic, and as Onatski points out, generic systems remain generic under
small perturbations of their coefficients. What is required is a perturbation that
introduces y into (1).

So what kind of a generic model lies close, in this sense, to our non-generic
model? Consider this “neighbor” model:

xt = 1.1xt−1 − .000001yt + εt (3)
Etyt+1 = .9yt + νt . (4)

Nothing has changed except for the addition of a tiny coefficient on current y in
the x equation. This model is generic. It has the same pair of stable and unstable
roots as the unperturbed model. It has a unique, stable solution. For the case of
serially independent, mean-zero disturbances, here it is:

xt = .90xt−1 + .82εt +
.000001

1.1
νt (5)

yt = 200, 000xt−1 + 181, 828εt − 1
1.1

νt . (6)

If we made the coefficient on yt smaller in (3), the coefficients on xt−1 and εt in (6)
would be even bigger. With systems responding this powerfully to shocks, we are
likely to be distrustful of the linearity assumption, and other aspects of the solution
as well.

Even within sets of models with unique stable solutions, all bounded by the
same constant, models can be arbitrarily close in the `1 metric on A(L) without
being close in solution space. Here’s an example of that:

xt = xt−1 + ayt−1 + εt (7)
Etyt+1 = yt + axt + νt . (8)

(9)

At a = 0, this system has a unit root and root-counting approaches give no answer,
but two models of this form, one with a > 0 and the other with a < 0 but the
same absolute value, approach each other in the elementwise `1 metric on {As}
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as |a| → 0, while the solutions for positive and negative a remain far apart. The
solution approaches, as a ↓ 0, a system in which xt − yt has a unit root and xt + yt
is serially uncorrelated, while as a ↑ 0, it approaches a system in which xt + yt has
a unit root and xt − yt is serially uncorrelated.

Economic models often have large numbers of zeros or other constraints on pa-
rameters, and these constraints often have a foundation in the model’s underlying
theory. Models for which root-counting and the winding number criterion fail to
deliver the correct answer will always involve some form of decoupling of the sys-
tem, so that unstable roots in one part of the model cannot be matched up with
forward-looking variables or equations in another part of the model. Such decou-
pling is not at all unlikely in economic models that are constrained by theory, and
alterations of the model that undo this decoupling, even when they involve small
deviations from the model’s constraints on the parameters, are likely to affect dras-
tically both the model solution and the model’s economic interpretation.

Even in models with finitely many leads and lags, there are some cases where
the winding number criterion gives the correct answer when Blanchard-Kahn root-
counting does not. But neither can be safely relied upon in general. The models
where they give the wrong answer can easily arise in economic research. This
implies that a reliable check for existence and uniqueness requires not just look-
ing at the winding number, but at all the “partial indices” of the system, to make
sure none have opposite signs. It is also possible, for systems with finitely many
leads and lags, to check existence and uniqueness reliably using the gensys.m or
gensys.R programs at sims.princeton.edu/yftp/gensys. The cases where
the winding number or root counting give the wrong answer are those where these
programs return (0,0) as the eu vector, which can be read as a result that there is
neither existence nor uniqueness. The gensys program separates the stable and
unstable parts of the system and checks whether i) the expectational terms enter
the unstable part in a rich enough way to stabilize it (existence) and ii) whether
the expectational terms that are pinned down in the unstable part by the stability
requirement determine the expectational terms that appear in the stable part of the
system (uniqueness). For finite-order systems, this is equivalent to checking signs
of partial indices.
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