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Answers for Decentralization and Asset Pricing
Exercise∗

1. The consumer’s first-order conditions deliver

Qt

C1(t)
= βEt

[
Qt+1 + Y2(t + 1)

C1(t + 1)

]
. (A1)

The consumer’s budget constraint is

C1(t) = Y1(t) + Y2(t) , (A2)

where we have used the fact that S1(t) = 1 for all t. This lets us rewrite (A1) as

Qt = βEt

[
(Y1(t) + Y2(t)) · (Qt+1 + Y2(t + 1))

Y1(t + 1) + Y2(t + 1)

]
(A3)

and then solve it forward to obtain

Qt = Et

[
(Y1(t) + Y2(t))

∞∑
s=1

βs Y2(t + s)

Y1(t + s) + Y2(t + s)

]

= (Y1(t) + Y2(t))

E

[
Y2(t)

Y1(t) + Y2(t)

]
β−1 − 1

. (A4)

In deriving the last equality in (A4) we are using the fact that the Y ’s are all
i.i.d., so the random ratios in the forward solution all have the same expectation
conditional on information at t. So we’ve now answered the question.

2. The steady state of the model with Y ’s having mean 1 is C1 ≡ C2 ≡ 1, with
Q ≡ 1/(β−1 − 1) ≡ 9. The four equations we will use are the social resource
constraint (49) (in the notes), the individual’s constraint (47) with i = 1, and the
Euler equations with respect to S (54) for i = 1, 2, with the Lagrange multiplier
substituted out using the C first order conditions (53). The resulting system,
arranged to have most recently dated variables on the left (mostly), and with
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endogenous error terms inserted to allow us to drop the Et’s, is

C1(t) + C2(t) = Y1(t) + Y2(t) (A5)

C1(t) + QtS1(t) − Y1(t) = (Qt + δt)S1(t − 1) (A6)

β
Qt + δt

C1(t)
=

Qt−1

C1(t − 1)
+ η1(t) (A7)

β
Qt + δt

C2(t)
=

Qt−1

C2(t − 1)
+ η2(t) . (A8)

Linearizing these equations around the steady state produces a system in our
canonical form

Γ0xt = Γ1xt−1 + Ψzt + Πηt (A9)

if we define xt = [dC1(t) dC2(t) dQt dS1(t)]
′ and zt = [dY1(t) dY2(t) dδt]

′ and set

Γ0 =




1 1 0 0
1 0 0 9
9 0 −.9 0
0 9 −.9 0


 , Γ1 =




0 0 0 0
0 0 0 10
9 0 −1 0
0 9 −1 0


 ,

Ψ =




1 1 0
1 0 0
0 0 .9
0 0 .9


 , Π =




0 0
0 0
−1 0
0 −1


 . (A10)

It is possible, by taking the difference of the last two equations and re-ordering
equations and variables, to get this model into a form in which Γ0 is block trian-
gular, with two 2 × 2 blocks on the diagonal. It then becomes possible to deal
with the system analytically. However, we are going to proceed by brute force nu-
merical methods. The analytic approach would have advantages if we wanted to
make a more complete analysis of how the system’s properties depend on choices
of parameters.

The system matrix has the Jordan decomposition

Γ−1
0 Γ1 =




0.5000 −0.5000 0 0
−0.5000 0.5000 0 0
−5.0000 −5.0000 1.1111 0
−0.0556 0.0556 0.0000 1.1111


 = V ΛV −1 , (A11)

with the eigenvalues arranged along the diagonal of Λ as [1.1111, 1.1111, 1, 0] and

V =




0 0 −0.5774 0.1098
0 0 0.5774 0.1098
0 0.9929 0 0.9879

1.0000 −0.1193 −0.5774 −0.0000


 . (A12)
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We will also need to use the matrix whose rows are the left eigenvectors,

V −1 =



−1.0407 −0.0407 0.1202 1.0000
−4.5324 −4.5324 1.0072 0
−0.8660 0.8660 0 0
4.5552 4.5552 0 0


 (A13)

To find the full solution we have to “solve the unstable equations forward”,
meaning we make the change of variables wt = V −1xt, so that the transformed
system becomes

wt =




1.1111 0 0 0
0 1.1111 0 0
0 0 1 0
0 0 0 0


wt−1 + V −1Γ−1

0 Ψzt + V −1Γ−1
0 Πηt . (A14)

Because our linearized system has i.i.d. z’s as well as serially uncorrelated η’s, the
forward solution for the two unstable components of w, w1 and w2, has no stochastic
component (the expected future values are all identically equal to unconditional means)
and simply sets w1 and w2 identically equal to their steady state values. In other words,

[
w1t

w2t

]
=

[−1.0407 −0.0407 0.1202 1.0000
−4.5324 −4.5324 1.0072 0

]
xt

= V 1·Γ−1
0 Et

[ ∞∑
s=1

βs(Ψzt+s + Πηt+s)

]

= V 1·Γ−1
0

∞∑
s=1

(
βs(Ψzt+s + Πηt+s)

)
= 0

(A15)

The full system is then

wt = V −1xt =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


V −1xt−1 +

[
0

V 2·

]
Γ−1

0 Ψzt +

[
0

V 2·

]
Πηt , (A16)

where V 2· stands for the second pair of rows in V −1. We could solve this system for x
by multiplying through by V . However the result would be a system involving η’s. We
can get rid of the η’s by using the fact that the far right-hand side of (A15) must be
identically zero, which implies (using the notation that V 1· and V 2· are the first and
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second pairs of rows in V −1, respectively)

V 1·Γ−1
0 (Ψzt + Πηt) = 0 (A17)[

0.1285 0.0050
0.5596 0.5596

]
ηt +

[
0.1156 0.0045 −0.1202
0.5036 0.5036 −1.0072

]
zt = 0 (A18)

ηt =

[−0.9000 0.0000 0.9000
0.0000 −0.9000 0.9000

]
zt . (A19)

However, it is a bit more direct to simply combine the first two rows of (A16) with
the first two rows of (A9), which do not involve any terms in η. The idea is that,
because the solution to the system with the stability conditions imposed is still one
solution to the original equations, any set of equations formed from some subset of
the equations of the original system plus the equations in (A15) is valid — that is,
is satisfied along the solution path. If we can form such an equation system so that
it uniquely determines a path for x, it gives us the solution. This approach need not
always be available. There may not be enough equations without η’s in the original
system, or the resulting system may have a singular coefficient matrix on current xt.
But often, as in this example, it does work.

With either approach, the final result, after solving for xt, is

dC1(t) = .5(dC1(t − 1) − dC2(t − 1)) + .55dY1(t) + .45dY2(t) (A20)

dC2(t) = −.5(dC1(t − 1) − dC2(t− 1) + .45dY1(t) + .55dY2(t) (A21)

dQt = 4.5(dY1(t) + dY2(t)) (A22)

dSt = .5(dC1(t) − dC2(t)) + .05(dY1(t)− dY2(t)) . (A23)

This differs from the complete-markets linearization, given in the problem statement,
in that

1. It makes C1 respond somewhat more strongly than C2 to Y1 shocks, and vice versa
for Y2 shocks, while the complete markets solution makes them respond equally.

2. It introduces serial correlation, so that when C1 was higher than C2 last period,
it tends to remain so this period. The logic of this is that in this incomplete
markets model the agents’ relative wealths are subject to random variation. An
agent consumes relatively more when the agent is relatively more wealthy, and
wealth differences tend to be serially correlated.

Note that fluctuations in δt have no effect at all in this linearization, regardless of
what stochastic process they follow. This is a special property of the linearization in
the neighborhood of S = 0. If we linearized around a steady state with S 6= 0, we
would find that shocks to δ affected relative wealths and thereby consumption paths.

Note also that the linearization implies dS ≡ .5(dC1 − dC2). So (A20)-(A23) above
could be written with dS replacing all the .5(dC1 − dC2) terms.


