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1. Where the conventional TVC’s come from

In a fairly wide class of growth models, the transversality conditions developed in
previous lectures take on a simplified form, and under some side conditions can be
converted into the transversality conditions that are usually taken to be standard.
Consider an optimization problem of the following form:

max
C

∞
0 ,S∞

0

E

[ ∞∑
t=0

βtU(Ct)

]
(A1)

subject to

Ct ≤ f(Kt, Kt−1, Lt, ε(t)), t = 0, . . . ,∞ . (A2)

The Euler equations are

∂C : DCUt = λt (A3)

∂L: DLUt = −λtD3ft (A4)

∂K: λtD1ft = −βEt[λt+1D2ft+1] . (A5)

The transversality condition is

lim sup
T→∞

βTE[(DCUT − λT )dCt + (DLUT + λT D3fT )dLT + λT D1fT dKT ] ≤ 0 . (A6)

The Euler equations guarantee that the terms in dCT and dLT drop out, leaving

lim sup
T→∞

βTE[λT D1fTdKT ] ≤ 0 . (A7)

A model that has an interpretation as a growth model will have D1fT < 0, so that
increasing Kt at t requires decreasing Ct. If the model satisfies K̂T ≥ 0 for every
feasible choice of K’s, then dKT ≥ −K̄T and in turn (A7) is less than

lim sup
T→∞

βTE[λTD1fT · (−K̄T )] . (A8)

Thus a sufficient condition for transversality to hold is

lim
T→∞

βTE[−λTD1fT K̄T ] = 0 . (A9)
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Concavity and Convexity: A set S is convex if and only
if whenever two points x1 and x2 are in S, αx1 +(1−α)x2 is
also in S for any α ∈ [0, 1]. A function g is concave if and
only if for any x1 and x2 arguments of g and any α ∈ [0, 1],
g(αx1 + (1 − α)x2) ≥ αg(x1) + (1− α)g(x2). A function g is
quasi-concave if for any c the set {x |g(x) ≥ c} is convex.
All concave functions are quasi-concave. A function g is
convex if and only if −g is concave, and it is quasi-convex
if and only if −g is quasi-concave. These notes have usually
assumed that constraints are in the form g(x) ≤ 0, with g
convex, but actually use only the fact that {x |g(x) ≤ 0} is
convex. So the weaker assumption of quasi-convexity of g
would have been enough.

In words, this says that the capital stocks (K might be a vector), valued at their mar-
ginal utility (and recognizing that this depends both on marginal utility of consumption
and on the shadow price of capital −D1fT ) must increase slower than β−T .

A very common special case is D1fT ≡ −1. This corresponds to perfect substitutabil-
ity of capital and consumption goods. It holds whenever the technology constraint is
written with Ct + Kt on the left, or when it has Ct + It on the left and It is defined by
It = Kt −Kt−1(1− δ). In this case the transversality condition becomes even simpler,
reducing to

lim
T→∞

βTE[λT KT ] = 0 . (A10)

This is the form of transversality condition you will most commonly see in the literature
on growth and real business cycles.

Summarizing, a model in the form (A1)-(A2) in which K ≥ 0 along on any feasible
path and K > 0 along the optimal path, admits the simplified transversality condition
(A9). If in addition the model makes capital and investment goods perfect substitutes
(D1f ≡ −1), the further simplified TVC (A10) applies. Of course as usual the sufficient
conditions for an optimum require the convexity, concavity and other conditions of the
infinite-dimensional Kuhn-Tucker theorem in addition to the Euler equations and the
TVC themselves.

2. The linear quadratic permanent income model revisited

Before proceeding to the problem set answer on this model, there is a technicality
to be cleared up. The discussion of the model in the notes “First Order Conditions
for Stochastic Problems: Examples” doesn’t take note of the fact that the model as
described does not fit the assumptions of the infinite-dimensional Kuhn-Tucker the-
orem in the notes “Random Lagrange Multipliers and Transversality”. The theorem
assumes that all constraints are inequalities, and includes in the sufficient conditions
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the requirement that all Lagrange multipliers are non-negative. The model writes the
budget constraint as an equality.

In fact, the theorem does apply when some constraints are equalities and the La-
grange multipliers on those constraints are unrestricted in sign, so long as the equality
constraints are linear. To make the extension, you replace the linear equality constraint
gt = 0 with the equivalent two inequality constraints gt ≤ 0 and −gt ≤ 0. These two
constraints then have two non-negative Lagrange multipliers, only one of which is non-
zero at any date, according to the direction in which the constraint binds. Because the
constraint is linear, both gt and −gt are convex functions. Making the problem fit the
framework of the theorem in this way turns out to be equivalent to simply letting the
Lagrange multiplier on the linear equality constraint be either positive or negative, as
in the discussion of the model in the last set of notes.

2.1. Problem 1. It may have been ambiguous what was “the above analysis” that
you were supposed to reproduce. We will go through everything done with the model,
though a legitimate interpretation was that you were asked just to redo the analysis of
the linearized model with time-varying r.

The FOC’s are

∂C : U ′
t = λt (A11)

∂H: λt = β(1 + rt)Et[λt+1] , (A12)

which reduce to

U ′
t = β(1 + rt)Et[U

′
t+1] . (A13)

Notice that though (A11) and (A12) are different from the corresponding Euler equa-
tions (5) and (6) in the problem set notes, after elimination of λ, the equation (A13)
that results is the same equation that emerges after elimination of λ from (5) and (6)
in the notes.

First we specialize to the case of constant 1 + r = β−1, quadratic utility, i.i.d. Y .
We can again derive from the FOC’s the condition that Ct is a martingale, and solving
forward to find a non-explosive solution for H leads to

Ht =
β

1 − β
(Ct − Ȳ ) (A14)

or

Ct = rHt + Ȳ . (A15)

It can be checked that this implies both Ct and Ht are martingales.
The transversality condition is

lim sup
T→∞

βtE[(1 − C̄T − λT )dCT − λT dHT ] ≤ 0 . (A16)

Here the FOC (A11) guarantees that the term in dCT above drops out. The same
reasoning as in the notes tells us that in the solution C̄t crosses above the satiation
level infinitely often, forcing λT to be less than, say, −δ < 0 infinitely often. It is then
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feasible to make dHT positive at those dates on which λT <= δ, and since doing so at
any one date sets off an upward explosion at the rate (1 + r)T in HT , this allows us
to make the lim sup in (A16) positive. This shows that the sufficient conditions for an
optimum are not met at the non-explosive solution.

Now consider linearizing the more general model. Coupling the budget constraint
(20) in the notes with (A13) gives us[

Ū ′′β(1 + r̄) 0
1 1

] [
dCt+1

dHt+1

]
=

[
Ū ′′ 0
0 1 + r̄

][
dCt

dHt

]
+

[
1
0

]
ηt+1 +

[
βŪ ′ 0
H̄ 1

] [
drt

dYt+1

]
.

(A17)

This leads to

A = Γ−1
0 Γ1 =

[
β−1(1 + r̄)−1 0
−β−1(1 + r̄)−1 1 + r̄

]
. (A18)

While this A is not exactly the same as that in (17) in the problem set notes, it is also
triangular in structure, so the process of verifying existence and uniqueness is exactly
parallel to that already discussed in the notes.

3. The simple growth model

3.1. Problem 2. The Euler equations for the problem as in the problem handout are

∂C : DCUt = λt (A19)

∂L: DLUt = −λtD3ft (A20)

∂K: λt = βEt[λt+1DKft+1] . (A21)

Because the model falls in the simplest category of the previous section, with D1ft ≡
−1, the TVC (we now know from the previous section) can be written in the form

lim
T→∞

βTλT KT = 0 . (A22)

3.2. Problem 3. In this special case the Euler equations become

∂C :
1

Ct
= λt (A23)

∂K: λt = βEt[λt+1αAt+1K
α−1
t ] . (A24)

We can then eliminate λ to obtain

1

Ct
= βEt

[
αAt+1K

α−1
t

Ct+1

]
. (A25)

The TVC becomes

lim
T→∞

βT KT

CT
= 0 . (A26)

With Kt/Ct constant, the TVC is certainly satisfied.
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Turning our attention to (A25), observe that from the technology constraint (22) in
the problem statement notes,

At+1K
α−1
t =

Kt+1 + Ct+1

Kt

. (A27)

Using this relationship in (A25), we arrive at

Kt

Ct
= βαEt

[
Kt+1

Ct+1
+ 1

]
. (A28)

But it is easy to see that this equation can be solved with K/C constant, so long as
we set

Kt

Ct
≡ αβ

1 − αβ
. (A29)

Thus this constant K/C ratio solves the Euler equations and and the satisfies the
TVC. To finish the argument that it is the solution, observe that, because log C is
twice differentiable and has second derivative −1/C2 which is negative everywhere, it
is concave. Also Kα is concave, for the same reason, and therefore g(Ct, Kt, Kt−1, At) =
Ct+Kt−AtK

α is convex, as required. This last step relies on two properties of concave
and convex functions:

i. if g is concave, −g is convex;
ii. linear combinations of concave functions are concave.

3.3. George Hall’s TVC. George in class displayed as the TVC

βT αAKα−1
T

KT+1 − AKα
T

−−−→
T→∞

0 . (A30)

There is no “E” operator here because A is non-random, so there is no uncertainty. The
denominator of this expression is, from the technology constraint, just CT+1. But then
the Euler equation (A25), with the E’s removed to reflect the absence of uncertainty,
asserts exactly that the TVC’s in (A30) and (A26) are the same.


