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Notation and basic assumptions


We consider a problem defined in terms of


t :�
a time index, with integer values�
�
C : �
a kx1 vector, called the control vector �
�
S : �
an nx1 vector, called the state vector �
�
� EMBED Equation  ���: �
a mapping from state vector values to subsets of � EMBED Equation  ���, defining constraints on the choice of C�
�
� EMBED Equation  ���: �
the information set at t, consisting of � EMBED Equation  ����
�
� EMBED Equation  ��� : �
a px1 random vector of disturbances at time t .�
�
The objective is to maximize


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �1�)�


by choice of � EMBED Equation  ���.  We assume that the infinite sum inside the brackets in � gotobutton ZEqnNum898647 � ref ZEqnNum898647 \! �(1)�� is well-defined for each choice of C’s that satisfies the constraints below and that the expectation of the sum is well-defined for each such choice of C’s.  The choice of C’s is constrained in four ways:


A) � EMBED Equation  ���  is given, not subject to choice;


B) for each t=1,...,(, � EMBED Equation  ���  is determined from past history and current � EMBED Equation  ��� according to


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �2�)�


C) for each t, � EMBED Equation  ���  is constrained to lie in the set � EMBED Equation  ���;


D) for each t, � EMBED Equation  ��� is allowed to depend only on information in � EMBED Equation  ���, and only in such a way that � EMBED Equation  ��� and � EMBED Equation  ��� are well-defined random variables.


Note that � gotobutton ZEqnNum027917 � ref ZEqnNum027917 \! �(2)�� means that, though we describe the problem as that of choosing both C and S to maximize the objective subject to (A)-(D), effectively we choose only C, since at each t, once � EMBED Equation  ���  is chosen, � EMBED Equation  ��� is determined by � gotobutton ZEqnNum149686 � ref ZEqnNum149686 \! �(2)��.  Note also that (D) means that the formal mathematical problem here is not choosing a sequence of numbers � EMBED Equation  ���, but choosing a sequence of functions � EMBED Equation  ��� such that at each date t, � EMBED Equation  ��� maps our position � EMBED Equation  ��� in the information set � EMBED Equation  ��� into our best choice for � EMBED Equation  ���.�  


     To complete the specification we need assumptions on the random disturbances (.  The standard dynamic programming framework requires that


E) for each t, � EMBED Equation  ��� is independent of � EMBED Equation  ��� and of all the random variables in � EMBED Equation  ���� and that


F) the random variables � EMBED Equation  ��� are mutually independent and identically distributed (i.i.d.).


This means that no choice made before time t can influence the realization of the random variable � EMBED Equation  ���.  Note that this does not mean that � EMBED Equation  ��� and � EMBED Equation  ��� are independent for � EMBED Equation  ���.  Since (`s dated earlier than s are in � EMBED Equation  ���, they may influence our choice of � EMBED Equation  ���; and this will create dependence in the joint probability distribution of � EMBED Equation  ��� and � EMBED Equation  ��� for � EMBED Equation  ���.  


Now observe that the range of probability distributions we can generate for values of � EMBED Equation  ��� and � EMBED Equation  ��� for � EMBED Equation  ��� through our choice of � EMBED Equation  ��� functions depends on � EMBED Equation  ��� only via � EMBED Equation  ���.  Since we are allowed to make the choice of � EMBED Equation  ��� depend on anything in � EMBED Equation  ��� that we like, we can create dependencies between the actual future values of S and C and, say, � EMBED Equation  ��� if we like.  But since this dependence can take any form we like, and since the data in � EMBED Equation  ��� are all fixed and known to us at the time 0 when we choose � EMBED Equation  ���, the range of distributions for future C and S that we can achieve does not depend on � EMBED Equation  ���, except through the fact that � EMBED Equation  ��� enters the version of � gotobutton ZEqnNum098138 � ref ZEqnNum098138 \! �(2)�� for � EMBED Equation  ���.  We denote by S the set of all possible values of S, and we mean by calling S “all possible values of S” that not only is every value of � EMBED Equation  ��� with which we might be confronted in S, but also for every � EMBED Equation  ���  in S and every way of choosing C's that satisfies (A)-(D), � EMBED Equation  ��� lies in S for all t with probability one.  Thus for every � EMBED Equation  ���  in S there will be a unique, possibly infinite, least upper bound for the attainable values of the objective function.  [Note that, though the future C's and S's are unknown and random at time 0, the objective function includes an expectation operator, so its value is a number, not a random variable.]  We denote by � EMBED Equation  ��� the function mapping S's in S into the least upper bound of achievable values of the objective function.  If the problem is well defined, V(S) exists for each S in S, though it is important in practice to check that the infinite sum in � gotobutton ZEqnNum062708 � ref ZEqnNum062708 \! �(1)�� indeed converges for all feasible choices of actions.  V is called the value function.


 The principle of optimality: necessity and sufficiency


Theorem � SEQ  theorem \* MERGEFORMAT �1�:  (The Principle of Optimality) Suppose that V is the value function for the problem of maximizing � gotobutton ZEqnNum496925 � ref ZEqnNum496925 \! �(1)�� subject to (A)-(F).  Then for each S in S, � EMBED Equation  ��� exists for all C in � EMBED Equation  ��� (with ±infinity allowable values), and


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �3�)�


Remark: In � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� we have omitted dates on C, S, and (, but we mean here to take the expectation with respect to the distribution of ( , which is the same for all t, and to treat S as non-random.  If (3) is true in this form for every S in S, then of course it will also be true at every t with C, S and the E operator given t subscripts and ( given a t+1 subscript.  For � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� to make sense, � EMBED Equation  ��� must be defined, though possibly infinite, as the theorem asserts.  


Proof:  Note that the objective (1) can be written as


	� EMBED Equation  ���.	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �4�)�


The term in � gotobutton ZEqnNum025858 � ref ZEqnNum025858 \! �(4)�� in brackets, together with the preceding E operator, is exactly the same in form as � gotobutton ZEqnNum072050 � ref ZEqnNum072050 \! �(1)��, except with all the time subscripts advanced by 1.  Since the constraints are all of the same form at all dates, the least upper bound of this term for a given value of � EMBED Equation  ��� is � EMBED Equation  ���.  In a well-defined problem, � gotobutton ZEqnNum025858 � ref ZEqnNum025858 \! �(4)��, being the value of the objective function, must itself be well-defined for every � EMBED Equation  ��� and every feasible choice of actions.  But one particular feasible choice of actions is to choose � EMBED Equation  ��� arbitrarily, then to choose � EMBED Equation  ��� for dates t=1 and later so that the second additive term in � gotobutton ZEqnNum025858 � ref ZEqnNum025858 \! �(4)��, for every possible value of � EMBED Equation  ���, is at least � EMBED Equation  ��� when � EMBED Equation  ��� is finite and at least 1/( when � EMBED Equation  ��� is infinite, where ( is an arbitrarily small positive number.  With this particular way of choosing C’s, we will have, therefore, when � EMBED Equation  ��� is finite with probability one,


	� EMBED Equation  ���.	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �5�)�


Since the second term in brackets is a random variable whose expectation we know exists, as it is the value of the objective function for a feasible choice of actions, � gotobutton ZEqnNum171498 � ref ZEqnNum171498 \! �(5)�� bounds its first term in brackets above and below by random variables whose expectations exist and are arbitrarily close to each other.  Thus the expectation of the first term exists as well.  When � EMBED Equation  ��� is infinite with non-zero probability, our choice of C’s gives an arbitrarily large value of the objective function, implying that the first term, being bounded below by random variables with arbitrarily large expectation, itself has a well-defined infinite expectation.


Now suppose � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� were not true.  Then either there would be, for some S in S, a choice � EMBED Equation  ��� of C making the right-hand-side of � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� exceed � EMBED Equation  ���, or there would be some S in S such that the right-hand side of � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� is bounded away from � EMBED Equation  ��� from below.  Suppose that � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� fails through the right-hand side being larger than � EMBED Equation  ���, where � EMBED Equation  ��� is the particular value of S at which � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� fails.  Now consider this way of choosing C's when � EMBED Equation  ���:  at time 0, choose � EMBED Equation  ���; at all later dates, choose C's according to a scheme that makes the term in brackets in � gotobutton ZEqnNum025858 � ref ZEqnNum025858 \! �(4)�� very close to � EMBED Equation  ���.  By doing so, we can make � gotobutton ZEqnNum025858 � ref ZEqnNum025858 \! �(4)�� as close as we like to the right-hand side of � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)��.  But then we will have succeeded in choosing C’s in such a way that the objective function value exceeds � EMBED Equation  ���, a contradiction.


If � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� fails the other way, so that for some � EMBED Equation  ��� the right-hand side of � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� is bounded away from � EMBED Equation  ��� from below, a parallel argument, again using � gotobutton ZEqnNum025858 � ref ZEqnNum025858 \! �(4)�� shows that there is no way to choose C’s to bring the objective function value arbitrarily close to � EMBED Equation  ��� when � EMBED Equation  ���, again a contradiction with the definition of V, which completes the proof.


There is an additional necessary condition on the value function that characterizes its long run rate of growth.


Theorem � SEQ theorem \* MERGEFORMAT �2�:  Suppose that V is the value function for the problem of maximizing � gotobutton ZEqnNum496925 � ref ZEqnNum496925 \! �(1)�� subject to (A)-(F).  Then for every � EMBED Equation  ���, it is possible to choose a policy function � EMBED Equation  ��� such that, for each S in S with V(S) finite, the value of the objective function attained using � EMBED Equation  ���is at least � EMBED Equation  ���, and the sequence of � EMBED Equation  ��� generated by setting � EMBED Equation  ��� and


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �6�)�


satisfies


	� EMBED Equation  ���.	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �7�)�


Remark: In the (usual) special case where there is a policy function � EMBED Equation  ��� that actually generates an objective function value equal to � EMBED Equation  ��� (rather than just arbitrarily close to it), � REF eq7 \* MERGEFORMAT �(7)� must hold for the S sequence generated by � EMBED Equation  ��� from every initial S for which V(S) is finite.  


Proof:  First observe that we can certainly find � EMBED Equation  ���.  Since V satisfies � gotobutton ZEqnNum140646 � ref ZEqnNum140646 \! �(3)�� by Theorem � SEQ theorem t1 \* MERGEFORMAT �1�, we can for each S that delivers finite V(S) choose � EMBED Equation  ��� to satisfy


	 � EMBED Equation  ���.	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �8�)�


If � gotobutton ZEqnNum216702 � ref ZEqnNum216702 \! �(8)�� holds for each S with finite V(S), then we can apply � gotobutton ZEqnNum216702 � ref ZEqnNum216702 \! �(8)�� to the term in brackets on its own left-hand side to obtain


	� EMBED Equation  ���,	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �9�)�


where we are assuming that the � EMBED Equation  ��� sequence is being generated from � gotobutton ZEqnNum576296 � ref ZEqnNum576296 \! �(6)��.  Repeatedly applying � gotobutton ZEqnNum666592 � ref ZEqnNum666592 \! �(8)�� this way will give us the desired conclusion, that the realized value of the objective function using � EMBED Equation  ��� is at least � EMBED Equation  ���.


This result suggests a method for solving these problems:  keep guessing forms for the V function until we find one that satisfies � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� for all S in S.  Since in checking whether � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� is satisfied for all S, we will ordinarily be finding, for every S, the � EMBED Equation  ��� that maximizes the right-hand side, we will have the policy rule � EMBED Equation  ���  immediately at hand when we have found the right V.  


The problems with this strategy are, first, that it is hopelessly inefficient until we find some systematic way to locate V's that might satisfy � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)��, and, second, that so far we know only that the V that represents the maximum attainable objective function value -- the value function of the problem -- satisfies � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)��.  We have not yet shown that there cannot be other functions V that also satisfy � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)��.  It turns out that generally there are other V's, besides the actual value function, that satisfy � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)��, but that we can pick out the true value function by applying some additional side conditions.


Theorem � SEQ theorem \* MERGEFORMAT �3�:  Suppose there is a function � EMBED Equation  ��� that satisfies � gotobutton ZEqnNum082576 � ref ZEqnNum082576 \! �(3)�� for every S in S and that in addition


i) for every S in S there is a value � EMBED Equation  ��� for C that attains the maximum on the right-hand side of (3) with � EMBED Equation  ���;


ii) for every � EMBED Equation  ��� in S, if � EMBED Equation  ���, � EMBED Equation  ���, is generated from


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �10�)�


then 


	� EMBED Equation  ��� ; and	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �11�)�


iii) for any � EMBED Equation  ��� that solves � gotobutton ZEqnNum270945 � ref ZEqnNum270945 \! �(3)�� for every S in S, there is some (>0 such that for any associated � EMBED Equation  ��� satisfying


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �12�)�


for every � EMBED Equation  ��� in S, if � EMBED Equation  ���, � EMBED Equation  ���, are generated from 


	� EMBED Equation  ��� , then	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �13�)�


	� EMBED Equation  ���.	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �14�)�


Then � EMBED Equation  ��� is the value function for the problem.�


Remark:  The theorem asserts that if the necessary conditions of Theorems � SEQ theorem t1 \* MERGEFORMAT �1� and � SEQ theorem t2 \* MERGEFORMAT �2� are met for � EMBED Equation  ���, then � EMBED Equation  ��� is the value function unless there is some other solution to � gotobutton ZEqnNum191365 � ref ZEqnNum191365 \! �(3)�� that violates � gotobutton ZEqnNum215477 � ref ZEqnNum215477 \! �(14)��.  It is straightforward, but somewhat tedious, to extend this theorem to the case where no � EMBED Equation  ��� is available and we instead have to settle for a sequence of � EMBED Equation  ���’s that approach the upper bound, as we used in Theorem � REF t2 \* MERGEFORMAT �� REF t2 \* MERGEFORMAT �� SEQ theorem t2 \* MERGEFORMAT �2�.  


Proof:  Suppose there is some solution � EMBED Equation  ��� to � gotobutton ZEqnNum191365 � ref ZEqnNum191365 \! �(3)��.  If for all S in S, � EMBED Equation  ���, with strict inequality for some S, then � EMBED Equation  ��� can’t be the value function.  This follows because, since it satisfies (ii), � EMBED Equation  ��� does represent an attainable value of the objective function for each possible value of its argument, so a policy that delivers a lower � EMBED Equation  ��� instead cannot be optimal.  But then suppose that, for some � EMBED Equation  ���, � EMBED Equation  ���.  Consider the following policy:  for � EMBED Equation  ���, set � EMBED Equation  ��� chosen as in (iii), then for � EMBED Equation  ��� set � EMBED Equation  ���, .  The value of the objective function under this policy starting from � EMBED Equation  ���is


	� EMBED Equation  ���,	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �15�)�


where by making ( small enough we can make � EMBED Equation  ��� as close as we like to � EMBED Equation  ���.  The convergence in � gotobutton ZEqnNum146798 � ref ZEqnNum146798 \! �(15)�� follows from (iii) and the definition of � EMBED Equation  ���.  But notice that


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �16�)�


(Note that in � gotobutton ZEqnNum867708 � ref ZEqnNum867708 \! �(16)��  we are implicitly treating the two � EMBED Equation  ��� values as generated by the C choice at time zero in each expression -- so the � EMBED Equation  ���’s in the two expressions are not the same.)  Applying the same argument again to � EMBED Equation  ��� in � REF ZEqnNum867708 \* MERGEFORMAT �(16)�, and so on recursively T times allows us to conclude


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �17�)�


But with ( arbitrarily small, � gotobutton ZEqnNum268664 � ref ZEqnNum268664 \! �(15)�� and � gotobutton ZEqnNum279375 � ref ZEqnNum279375 \! �(17)�� together imply � EMBED Equation  ���, which contradicts our initial assumption.  So � EMBED Equation  ��� for all S, which we have already noted means that � EMBED Equation  ��� is not the value function.  Since the argument applies to arbitrary � EMBED Equation  ���, � EMBED Equation  ��� is the unique optimal solution and we have completed the proof.


Corollary:  If U is bounded below, the necessary conditions of Theorems � SEQ theorem t1 \* MERGEFORMAT �1� and � SEQ theorem t2 \* MERGEFORMAT �2� are also sufficient.


Proof:  Because the objective function is discounted, it is bounded below when U is bounded below.  This makes � gotobutton ZEqnNum358941 � ref ZEqnNum358941 \! �(14)�� hold automatically.  


Value Iteration


The arguments of the previous section point to a conceptually simple method for approximating the value function and hence � EMBED Equation  ���, the optimal policy rule.  The method is called, for reasons that will be obvious, value function iteration, and proceeds as follows.  Begin by guessing a form � EMBED Equation  ��� for the value function.  Then for each iteration n, n=1,2,3,..., set, for each S in S,


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �18�)�


Continue until � EMBED Equation  ���, all S, to within some criterion for numerical accuracy.  At that point a V satisfying the principal of optimality will have been arrived at, and the other necessary and sufficient conditions can be checked.  


It is not necessarily true that value function iterations converge, however.  When U is unbounded either above or below, it can easily happen that value function iteration convergence fails.  Since many of the standard utility functions of macroeconomic models -- logarithmic � EMBED Equation  ��� and CRR � EMBED Equation  ��� for example -- fail to satisfy such a boundedness condition, we must generally be wary that value iteration might not converge.  It is worth knowing, though, that when U is bounded (which we already know is a sufficient condition to guarantee that a solution to the optimality equation is the value function) value iteration necessarily converges.  The argument goes as follows.  First we note that


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �19�)�


This follows from � gotobutton ZEqnNum745332 � ref ZEqnNum745332 \! �(18)�� and the fact that


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �20�)�


If we introduce as a norm on the space of V’s


	� EMBED Equation  ��� ,	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �21�)�


� gotobutton ZEqnNum071421 � ref ZEqnNum071421 \! �(19)�� can be used to produce


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �22�)�


This implies that the sequence of value function iterates � EMBED Equation  ��� is a Cauchy sequence on the space of bounded functions, and hence that it converges to some bounded function.  The reason the argument fails when U is unbounded is that then V is generally unbounded (not infinite -- it just gets arbitrarily large or small as we change its argument S) and therefore does not allow us to use � gotobutton ZEqnNum296559 � ref ZEqnNum296559 \! �(21)��.  Even if we start with a bounded � EMBED Equation  ���, the unboundedness of U generally can make � EMBED Equation  ��� unbounded.  


Constraints at Infinity


We could have set up our problem with two sorts of additional terms.  The objective function could have been expanded to the form


	� EMBED Equation  ���,	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \r 23 \c �23�)�


and the constraints could have been expanded to include the requirement that 


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �24�)�


Note that in � gotobutton ZEqnNum225926 � ref ZEqnNum225926 \! �(24)�� there is no expectation operator, so we are requiring that the inequality hold with certainty.  


With these additions, the problem retains its recursive structure and the Bellman equation still functions in the same way as a necessary and (with some side conditions) sufficient condition for an optimum.  You might go through the arguments yourself step by step to be sure that this is true.


Exogenous States


In many economic models the assumption off i.i.d. shocks (, (F) in the first part of the notes, is a source of some difficulty.  The objective function is often interpretable as a utility function or profit function and the constraints (2) on the evolution of the state are often interpretable as budget constraints or production relations.  But in such objects the serial dependence properties of "exogenous disturbances" is not naturally taken to be restricted.  "Technology" in a production function, for example, is often taken to drift upward in a serially correlated way, and "income" in a consumer's optimization problem is naturally taken to be serially correlated.  Such situations can be accomodated by including in the equations for evolution of the state (2) a description of the serial dependence in the exogenous disturbances.  In this case the exogenous components of the problem might be labeled Z , and their stochastic evolution described by an equation of the form


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �25�)�


in which � EMBED Equation  ��� satisfies both (E) and (F).  The state vector in the problem is then taken to include both endogenous states, which we might label K , and exogenous states Z .  The full state vector � EMBED Equation  ���.  The equations of evolution given in (2) can then be expanded to the specialized form


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �26�)�


Here ( is playing the role of a component of ( in the more general specification (2).  


We point out this special case here not only because it shows how serial dependence in stochastic components of the model can be accommodated within a dynamic programming setup, but also because it often helps simplify finding and interpreting solutions to recognize a structure like that in � gotobutton ZEqnNum083159 � ref ZEqnNum083159 \! �(25)��-� gotobutton ZEqnNum103372 � ref ZEqnNum103372 \! �(26)�� when it is present.  


First Order Conditions


The usual techniques of calculus, in particular the Kuhn-Tucker conditions for an optimum, can be applied to the Bellman equation (3) when U and V are differentiable and have appropriate concavity properties and when the constraints defined in (C) also have differentiable forms.  Slightly abusing notation, we will use � EMBED Equation  ��� to stand for � EMBED Equation  ��� in what follows.  Assume that for each value S of the state vector and each C in � EMBED Equation  ���, 


	� EMBED Equation  ��� 	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �27�)�


are well-defined.


Assume also that the set � EMBED Equation  ��� can be characterized by the inequality (or vector of inequalities)


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �28�)�


The usual Kuhn-Tucker theorem then asserts that a necessary condition for (3) to hold (assuming that the lub in (3) is attained) is that


	� EMBED Equation  ��� ,	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �29�)�


with � EMBED Equation  ���for those elements of ( corresponding to which the inequality in � gotobutton ZEqnNum810825 � ref ZEqnNum810825 \! �(28)�� is an equality, and � EMBED Equation  ��� for those where the inequality is strict.  Recognizing that optimal C is a function � EMBED Equation  ��� of S, we can differentiate left and right-hand sides of (3) with respect to S to obtain


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �30�)�


In writing � gotobutton ZEqnNum316849 � ref ZEqnNum316849 \! �(30)�� we assume that � EMBED Equation  ��� is differentiable.  Notice that the term in brackets following � EMBED Equation  ��� is exactly the left-hand side of � gotobutton ZEqnNum459874 � ref ZEqnNum459874 \! �(29)��.  The fact that this term is zero in the case with no constraints on C is a special case of a theorem called the envelope theorem, and � gotobutton ZEqnNum492445 � ref ZEqnNum492445 \! �(30)�� with that term substituted out is sometimes called the "envelope condition" in dynamic programming jargon.  


Because � gotobutton ZEqnNum814030 � ref ZEqnNum814030 \! �(30)�� involves the unknown function � EMBED Equation  ���, it is not directly very useful.  Using � gotobutton ZEqnNum068608 � ref ZEqnNum068608 \! �(29)�� we can convert � gotobutton ZEqnNum814030 � ref ZEqnNum814030 \! �(30)�� to the form


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �31�)�


Then we observe that, if � EMBED Equation  ���, so the constraint that H=0 is binding,


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �32�)�


Using � gotobutton ZEqnNum970861 � ref ZEqnNum970861 \! �(32)�� in � gotobutton ZEqnNum981351 � ref ZEqnNum981351 \! �(31)�� then gives us the usual form of the envelope condition


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �33�)�


Equations � gotobutton ZEqnNum289755 � ref ZEqnNum289755 \! �(29)�� and � gotobutton ZEqnNum299202 � ref ZEqnNum299202 \! �(33)�� together are sometimes called the Euler equations for the problem.  Note that one way to remember them is to form the “Hamiltonian-like” expression


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �(� seq MTEqn \c �34�)�


Equations � gotobutton ZEqnNum289755 � ref ZEqnNum289755 \! �(29)�� and � gotobutton ZEqnNum651546 � ref ZEqnNum651546 \! �(33)�� are then the partial derivatives of � gotobutton ZEqnNum777984 � ref ZEqnNum777984 \! �(34)�� with respect to C and S, respectively.  


When � gotobutton ZEqnNum349514 � ref ZEqnNum349514 \! �(28)�� holds with equality, � gotobutton ZEqnNum349514 � ref ZEqnNum349514 \! �(28)��, � gotobutton ZEqnNum289755 � ref ZEqnNum289755 \! �(29)�� and � gotobutton ZEqnNum651546 � ref ZEqnNum651546 \! �(33)�� are a system with as many equations as the sum of the dimensions of the vectors C, S and (.  If it were not for the expectation operators in the system, we could solve it for � EMBED Equation  ���, C and ( for any given � EMBED Equation  ���.  Because of the expectation operator, we have to treat the system as a functional equation.  One way to use it computationally, for example, would be to postulate a functional form for � EMBED Equation  ��� and use the postulated form in computing the expectations in � gotobutton ZEqnNum289755 � ref ZEqnNum289755 \! �(29)�� and � gotobutton ZEqnNum651546 � ref ZEqnNum651546 \! �(33)��.  Then the system can ordinarily be solved jointly for C, ( and � EMBED Equation  ��� for any given S, producing (if we solve it for many values of S) a new candidate guess for � EMBED Equation  ���.  Iterating this process we might hope to arrive at a � EMBED Equation  ��� function that satisfies the equations, and in the process at a � EMBED Equation  ��� function that defines optimal decisions.  Methods like this are, or can be made to be, numerically more efficient than value function iteration when the problem is smooth enough to allow their application.  


� The technically sophisticated reader may note that (D) directly rules out the kind of non-measurability that concerns Stokey and Lucas in their chapter 9.1.


� Since � EMBED Equation  ��� is required by (D) above to depend only on random variables in � EMBED Equation  ���, (E) could omit the “of � EMBED Equation  ��� and” phrase.


� Condition (iii) can easily be relaxed to require only that � EMBED Equation  ���.  The proof then is longer, but has essentially the same form.
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