C. Sims

First Order Conditions for Stochastic Problems: Examples

I. Permanent income model

A. $\max _{\{C(t), A(t)\}_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^{t} U(C(t))\right]$
B. $A(t) \leq\left(1+r_{t-1}\right) A(t-1)-C(t)+Y(t), t=1, \ldots, \infty$,

1. or $W(t) \leq\left(1+r_{t-1}\right)(W(t-1)-C(t-1))+Y(t)$
a) (follows from $\left.W(t)=\left(1+r_{t-1}\right) A(t-1)+Y(t)\right)$

C.FOC's

1. $\partial C: \quad U^{\prime}(C(t))-\lambda(t)=0$
2. $\partial A: \quad \lambda(t)=\beta \cdot\left(1+r_{t}\right) E_{t}[\lambda(t+1)]$

D.Transversality

1. $E\left[\sum_{t=0}^{T} \lambda_{t} \beta^{t}\left\{d A(t)+d C(t)-d A(t-1)\left(1+r_{t-1}\right)\right\}\right]=E\left[\sum_{t=0}^{T} \lambda_{t} \beta^{t} d C(t)\right]+E\left[\lambda_{T} \beta^{T} d A(T)\right]$ converges, as a linear function of $\{d C, d A\}$, as $T \rightarrow \infty$, and the same holds true for $E\left[\sum_{t=0}^{T} \beta^{t} U_{t}^{\prime} d C_{t}\right]$
a) What is usually called the transversality condition is one component of the condition we have stated here, checked at $d A=A: \lim _{T \rightarrow \infty} E\left[\beta^{T} \lambda_{T} A(T)\right]=0$. If the interest rate r is constant, it is feasible to set $C(t)=0$, all t and thereby make A grow as $(1+r)^{t}$. Thus even if $A(t)$ remains bounded as $t \rightarrow \infty$ at the optimum, application of the separating hyperplanes argument requires that in addition $\lim _{T \rightarrow \infty} E\left[\beta^{T} \lambda_{T}(1+r)^{T}\right]=0$. If $\beta \cdot(1+r)<1$ this will be true whenever $E \lambda_{T}=E U_{T}^{\prime}$ remains bounded on the optimum path. If $\beta \cdot(1+r) \geq 1$ it can be true only if $E \lambda_{T}$ tends rapidly enough to zero.
b) Note that to actually check the condition, we need to know the nature of the solution for optimal C and A, which will in turn depend on the properties of the exogenous random terms r and Y.

II. Optimal Growth

A. $\max _{\{K(t), I(t), C(t), L(t)\}} E\left[\sum_{t=0}^{\infty} \beta^{t} U(C(t), 1-L(t))\right]$
B. subject to

1. $\lambda: \quad C(t)+I(t)=A(t) f(K(t-1), L(t))$
2. $\mu: \quad K(t)=(1-\delta) K(t-1)+I(t)$

C.FOC's

1. $\partial C: \quad D_{1} U_{t}=\lambda(t)$
2. $\partial L: \quad D_{2} U_{t}=\lambda(t) A(t) D_{L} f_{t}$
3. $\partial I: \quad \lambda(t)=\mu(t)$
4. $\partial K: \quad \mu(t)=\beta E_{t}\left[\lambda(t+1) A(t+1) D_{K} f_{t+1}+(1-\delta) \mu(t+1)\right]$
D. Transversality
5. $E\left[\sum_{t=0}^{T} \beta^{t} \lambda_{t}\left(d C(t)+d I(t)-A(t)\left\{D_{K} f_{t} d K(t-1)+D_{L} f_{t} d L(t)\right\}\right)\right]+$

$$
E\left[\sum_{t=0}^{T} \beta^{t} \mu_{t}(d K(t)-d I(t)-(1-\delta) d K(t-1))\right]=
$$

$E\left[\sum_{t=0}^{T} \beta^{t} \lambda_{t}\left(d C(t)+D_{L} f_{t} d L_{t}\right)\right]+E\left[\beta^{T} \mu_{T} d K(T)\right] \quad$ converges. In particular,
$\lim _{T \rightarrow \infty} E\left[\beta^{T} \mu_{T} K(T)\right]=0$. Also, $E\left[\sum_{t=0}^{T} \beta^{t}\left(D_{1} U_{t} d C(t)-D_{2} U_{t} d L(t)\right)\right]$ converges.

III. Exercise

A. Find the FOC's for the permanent income model with W 's replacing A 's. Show the relationship between the Lagrange multiplier for this version of the problem and that shown above for the A version.
B. Show that if r_{t} varies randomly, independently across time, and if $E\left[\left(1+r_{t}\right) \beta\right]=1$, this is not enough to imply that marginal utility of consumption is even approximately a martingale, so long as the variation in r is large.
C. Assume the marginal utility of leisure is zero, so that optimal L is identically 1 and it drops out of the decision problem in the growth model. Suppose $U_{t}=\log C_{t}, \delta=1$ and $f_{t}=K_{t-1}^{\alpha}$. Show that a constant $C(t) / K(t)$ satisfies the

FOC's, including transversality. Assume $0<\alpha<1$. Assume the exogenous stochastic process A is bounded away from zero and infinity.
D. For the same case as in part C above, show that no other feasible solution to the Euler equations (the FOC's other than transversality) satisfies transversality.

